
r.iTTVWW. v, v.^rrv v^.'^."' <*."■ ^ • ^ITW ^»^ ■, s«.n vutn »L» 'LH k w% •n ^r^rrr^r^sn

in

CM

O)
CO

<
i

Q
<

• /

Productivity Engineering in the UNIX1 Environment

Distributed Name Servers: Naming and Caching in L?/ge
Distributed Computing Environments

Technical Report

S. L. Graham
Principal Investigator

(415) 642-2059

"Tiie views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government."

»'■

IP

O-
o o

Contract No. N00039-84-C-0089

Arpa Order No. 4871

'UNK is a trademark of AT&T Bell Laboratories Tb is c'vvr
ici p.-bli-
Ü1 ,iilDw Vi ,'-

irr.t has been approved
, \ ■.- :,-, and sale; its
i 1; u :ilin"iiied.

A**.i at S.'^A--^*. tf~^ 4*- l'- <*- l.*. «' V"^ •' ä"

^*.^,v^•'.w"■!■.""•-,T■•■_""<*'-■ ^'•^•iyiyr^w^^-'^rr^.'^'r^'.^^'r^'T^"^ '-\'^\'.-"\'i^j^'Tr'^^r?"TWfyrwwtrt.»n^-\w-y wrrrwyyyyygg» '.'vi.mv'«i^"«'.'^\"v'>
,^\.,< w^ J

Distributed Name Servers:
Naming and Caching in Large

Distributed Computing Environments

by

Douglas Brian Terry

Abstract

Name services facilitate sharing in distributed environments by allowing objects
to be named unambiguously and maintaining a set of application-defined attiibutes
for each named object. Existing distributed name services, which manage names
based on their syntactic structure, may lack the flexibility needed by large, diverse,
and evolving computing communities. A new approach, structure-free oame man-
agement, separates three activities: choosing names, selecting the storage sites for
object attributes, and resolving an object's name to its attributes. Administrative
entities apportion the responsibility for managing variors names, while the name
service's information needed to locate an object's attributes can be independently
reconfigured to improve performance or meet changing demands.

An analytical performance model for distributed name services provides assess-
ments of the effect of various design and configuration choice? on the cost of name ser-
vice operations. Measurements of Xerox's Grapevine registration service are used as
inputs to the model to demonstrate the benefits of replicating an object's attributes
to coincide with sizeable localities of interest. Additional performance benefits result
from clients' acquiring local caches of name service data treated as hints. A cache
management strategy that maintains a minimum level of cache accuracy is shown
to be more effective than the usual technique of maximizing the hit ratio; cache
managers can guarantee reduced overall response times, even though clients must
occasionally recover from outdated cache data.

\
1 , -' - i

\ ^ \ ■'

J -Ji -,■•-.•■■■•

WwvtfiWalrn''v'jv. ^n. if'.-Tr. ^ '"/v".'»^. *■- wt«v»". rs n»^J iraw^»vi"i TU"-V-?■«» »"■ V•^'.'rn,"««"."«r1 ur»." ^^%" ■"."^■L-ta-* r«sy wr sr»r-.«'

Distributed Name Servers:
Naming and Caching in Large

Distributed Computing Environments

Copyright © 1985

by

Douglas Brian Terry

j . ji -n _^ j -» -# •^■•^Sy^^-

lyv'Wtif MA^u^nrAT^x^v"'^« «". wT*t »■«■<t«m»ar-..

Contents

L
Introduction
1.1 The Electronic Baobabs

Name Services 1.2
1.2.1
1.2.2

Role
Names
1.2.2.1 Properties 2
1.2.2.2 Structure 3
1.2.2.3 Context» 4
Object attributes 4
Operations 5

1.3 The Thesis 6

1.2.3
1.2.4

Name Service Detignt: A Survey
2.1 Existing Name Services . . .

2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.10

8
 8

NIC Name Server 8
DARPA Domain Name System 9
BIND Server 9
PUP Name Lookup Server 9
('rapevine 9
Cle&rüighouse
CSNET Name Server
Cambridge Name Server
COSEE Name Server
R* Catalog Manager

2.2 Structural Components 1
2.2.1 Servers 1
2.2.2 Agents 1

2.3 Functional Components 1
2.3.1 Communication 12
2.3.2 Database management 15
2.3.3 Name management 16

2.4 Performance Issues 17
2.4.1 Models 20
2.4.2 Measurements 20
2.4.3 Caching 20

2.5 Evaluation of Previous Work 20

Name Distribution 23
3.1 Foundations 23

3.1.1 A Layered Architecture 23
3.1.2 Communication Support 23
3.1.3 Database Support 24

i M ■_»"-.« 'J- ■_- ■v^:v\-:v:v:v:v:v: ^■'•fiii^syl:%^--i-^:^i>^-av/<

.-"V V» E^ I P» L"v n (m '."V FT V> ^-w .V .% .-v '^N

3.1.3.1 Local database management 25
3.1.3.2 Replicated data 26

3.2 Structure-free Name Distribution 27
3.2.1 Assigning authority 27
3.2.2 Authority Attributes 28

3.3 Distributed Operations 29
3.3.1 Basic steps 29
3.3.2 Locating name servers 29
3.3.3 Name service interface 30

3.4 Summary 32

Nam« Resolution 33
4.1 Name Resolution Model 33

4.1.1 Distributing configuration data 33
4.1.2 Context objects 33
4.1.3 Clustering conditions for configuration tuples 34
4.1.4 Context bindings and name resolution chains 35
4.1.5 Applying the name resolution model 36

4.1.5.1 Syntactic -rlustering 36
4.1.5.2 Variable syntactic clustering 37
4.1.5.3 Non-syntactic clustering 39
4 1.54 Mixed clustering for growing s> «terns 41

4.1.6 Extensions for other naming styles 42
4.1.6.1 Naming networks 42
4.1.6.2 Beyond naming networks 44

4.1.7 Advantages of structure-free name resolution 44
4.2 Name Resolution Mechanism 45

4.2-1 Configuration database queries 45
4.2.2 Locating context objects 46
4.2.3 Styles of name resolution 47

4.2.3.1 Recursive . 47
4.2.3.2 Iterative 48
4.2.3.3 Transitive 51
4.2.3.4 Comparisons 51

4.3 Dynamics of Name Management . , 53
4.3.1 Updates 53
4.3.2 Name registration 53
4.3.3 Name service reconfiguration 54

4.4 Summary 55

7 Jrformance Analysis 50
5.1 Name Service Performance 56
5.2 A Model for Name Seiver Interaction 57

5.2.1 Name servers and clients 57
5.2.2 The network 57
5.2.3 The database 57
5.2.4 Reference patterns 58
5.2.5 Operation costs 58
5.2.6 Summary 58

5.3 Performance of Individual Servers 59
5.4 Name Server Placement 59
5.5 Assigning Authority . 62

5.5.1 Basics 62
5.5.2 Flat name spare 62

J-JJL'J-.'^J^.: V V V.^L

pA ?.- • VW-*.'■■'.■V/'-'. p,wmnj«% ^.^.■^.■^<,r#^*Ti"^if'"5T».''J" V'^~T^^T1^^»T^T'''rT-i--7»tnrv^-r,'T''

5.5.3 Physically partitioned name space 63
5.5.4 Organizationally partitioned name space 63

5.6 Benefits of Replication 64
5.7 Name Server Failures 66
5.8 Exploiting Client Behavior 67

5.8.1 Locality of reference 67
5.8.2 Lookup/update ratio 68

5.9 Summary 69

Measurement* of Grapevine 70
6.1 Basics of the Experiment 70

6.1.1 Goals 70
6.1.2 Why Grapevine? 70
6.1.3 Grapevine's logs 72
6.1.4 Retrieving, parsing, and analyzing log data 72

6.2 Locality of Reference 73
6.2.1 Methodology 73
6.2.2 Results 75

6.3 Lookup/Update Ratio . 77
6.3.1 Methodology 77
6.3.2 Results 77

6.4 Applying the Name Server Model to Grapevine 73
6.4.1 Grapevine's configuration 78
6.4.2 The benefits of Grapevine's locality 80
6.4.3 The benefits of remote authorities 81
6.4.4 Comparisons along two dimensions 81

6.5 Summary 83

Caching Name Server Data 86
7.1 Cache Management 85

7.1.1 Caching for performance enhancements 85
7.1.2 Hints vs. strong consistency 86
7.1.3 Cache accuracy 86
7.1.4 A new approach to cache management 87

7.2 Basics of Caching Hints 88
7.2.1 The cache manager 88
7.2.2 A cache interface 90
7.2.3 Obtaining cached data 90
7.2.4 Using cached data 91
7.2.5 Policies for managing cached data 92

7.3 Refresh/RevaLidation Techniques 94
7.3.1 Requer/ strategies 94
7.3.2 Timestamps 94
7.3.3 User-supplied revalidation proepdures 95

7.4 Estimates of Cache Accuracy 96
7.4.1 Probabilistic algorithms 96
7.4.2 Estimates from imperfect knowledge 99
7.4.3 Accuracy with revalidation 100

7.5 Other Issues in Cache Maintenance 101
7.5.1 Conflicting Cache Requirements 101
7.5.2 Size constraints 102

7.6 Name Server Support for Caching 103
7.6.1 Metadata 103
7.62 Modified interfaces 105

ui

-*■£ - ^^^''v'^^tj^^^^^^iM^zJlm-f^ZJltä'M <■,'<.'<. -;^\' .-.V. ^'v'v^^' ^''-ir'"^"'.-''^v>--I'A ^'^-!,y:

IV

7.7 SuAmary 106

8 Final Remark« 107
8.1 Reflections on the Architecture 107
8.2 Thesis Coatributions 108
8.3 Area« for Future Work 109

Glossary 111

Bibliography 115

L.'4'v>>^!v>!fS^v>^?^!yfe^lvIv

List of Figures

2.1 Individual name agents 13
2.2 Shared name agents 14
2.3 Domain name space with sample zones 18
2.4 Hierarchical name space with dispersal cut 19

3.1 Functional layers in a name server 24
3.2 Dat&baae interface 25
3.3 Replicated data interface 26
3.4 Name Service interface 31
3.5 Name Agent interface 32

4.1 Sample hierarchical name space 38
4.2 Syntactic clustering of a hierarchical name space 38
4.3 Configuration database for syntactic clustering 39
4.4 Clustering varying numbers of labels 40
4.5 Clustering a name space through hashing 40
4.6 Configuration database for algorithmic clustering 41
4.7 Clustering large Grapevine registries algorithmically 42
4.8 Mutually encapsulated name spaces 43
4.9 Styles of name resolution 52

5.1 Name service model parameters 59
5.2 A sample internet 60

6.1 Topology of the Grapevine internet 71
6.2 Logging during mail delivery in Grapevine 74
6.3 Lookup coats for different reference patterns/authority assignments 82

7.1 Cache managers and name agents 89
7.2 Cache interface 91
7.3 Distribution function F(t) 97
7.4 Density function f(t) 98
7.5 Approximating F(t) by interpolation 100

AV^V*AViV<:jL^f-I<As>I^

7-m _ Ti-^i » ;.; '

List of Tables
8
I

• I
5 1 Communicalion costs 61
5.2 Effects of replication on lookup costs 65
5.3 Effects of failures on lookup costs for A = 5 67

6.1 Locality of interests in Grapevine (normalized by sender) 75 ^ |
6.2 Locality of interests in Grapevine (normalised by recipients) 76
6.3 Locality of interests in Grapevine (adjusted for registry sise) 76
6.4 Individual updates in Grapevine. 78
6.5 Group updates in Grapevine 78
6.6 Associations between clients, registries, and servers in Grapevine 79
6.7 Authoritative servers for Grapevine registries 79 _
6.8 Coats of accessing individual Grapevine registries 80
6.9 Expected lookup coats for Grapevine clients 81
6.10 Expected lookup costs without remote authorities 83

7.1 Sample object lifetimes 98

•I

•i

•I

•l

• !

• I

•J» V '

Acknowledgements

The journey in pursuit of a doctoral degree is long and perilous; no one can make it alone. I sun
graceful to the many people that have aided me along the way.

My two major advisors, Robert Fabry and Domenico Ferrari, gave me the freedom to explore on
my own, while fixing an e/e on my wanderings. I learned a tremendous amount from my explorations.
Bob's insistence on excellence served to reinforce my own. His suggestions for improvements, right
until the end, substantially strengthened the thesis. Domenico, in spite of his many responsibilities
and unreasonable work load, would always find time to speak with me whenever I needed guidance.
With his red pen in hand, he thoroughly and punctually marked up every draft. My third reader,
Lucien LeCam, provided a much needed refresher course on probability and statistics.

I appreciate the support of several colleagues that have contributed in rarious ways. Bob Hag-
maim was instrumental in arranging a consulting agreement with Xerox PARC so that I could study
the Grapevine system. Michael Schroeder and Andrew Birrell explained the internals of Grapevine
and how its logs were organized. Hal Murray was a constant source of information on the day-to-day
operation of the system. More importantly, Hal read the dissertation and discovered several embar-
rassing bugs in my name server prototype implementation. Howard Sturgis bravely read an early
draft and helped me focus my ideas. Luis Felipe Cabrera, Juliet Sutherland, and Songnian Zhou
furnished comments on several chapters. Juliet was particularly helpful at keeping me abreast of cur-
rent standardizaticn efforts in the area of name services. I have also benefited from many discussions
with fellow researchers at U. C. Berkeley, IBM Research, Xerox PARC, and other institutions across
the country too numerous to name.

My interest in distributed computing and the motivation for my thesis germinated while I was an
academic associate for IBM Research. This research was partially sponsored by the Defense Advance
Research Projects Agency (DoD) Arpa Order No. 4031 and monitored by the Naval Electronic
System Command under Contract No. N00039-C-0235. Much of the support during the preparation
of this dissertation was generously provided by the Xerox Palo Alto Research Center.

Margaret Butler played many vital roles: technical editor, style critic, counselor, friend. She
patiently suffered through numerous rough drafts. No matter what predicament I got myself into,
she was always just a phone call away. Margaret invariably had a smile and good word when I was
down. I am deeply indebted to her for all of her assistance. I only hope that I can serve her aa well
when the roles are reversed.

As usual, my friends and family have kept me going through all these years. I am eternally
grateful for all the joyous moments I have had in Berkeley. Katie deserves special credit for helping
me adjust to the strangeness that is Berkeley and to the demands of graduate studies.

Finally, I dedicate this dissertation, the culmination of many years of education, to my parents.
George and Georgette Terry. They may not understand its technical merits, but their contributions
have been great.

vu

■ut i^t a.» 7 ßu^li-li :■& .".V.1

. *m*w* w^M ■> WM ■ ■. ■ w"» H
' W - * "■ - ■ V -!,«,' L p « « ^a .J1

Chapter 1

Introduction

/ knew very well that in addition to tii<? great planets - aucb aa the Earth, Jupiter, Mars,
Venus - to which we have given names, there are aiso hundreds of others, some of which
are so small that one has a hard time seeing them through the telescope. When an
astronomer discovers one of these he does not give it a name, but oniy a number.

— Antoine de Saint Exup^ry, The Little Prince.

1.1 The Electronic Baobabs

Like the little prince's galaxy, with planets too numerous to be named, contemporary distributed
computing environments have evolved to the point that it is difficult *o name and catalogue the many
available resources. To facilitate the sha'ing of information and resources, immense interconnections
of public and private data networks have been established, permitting users access to extraordinary
numbers of potentially shareable resources. The DARPA Internet hosts table, for instance, now
contains over 300 networks connecting most of the major U.S. universities, military organizations,
and computer corporations.

Physical connectivity, however, is not sufficient to allow resources to be effectively utilized by
the various members of these vast, interconnected computing communities. Uniform mechanisms are
needed for identifying and locating objects and resources that are made accessible to the community
by their creators or owners. That is, objects should be given name», names that can be freely passed
around the internet and shared amongst its users so that the objects themselves might be shrred.
Once users have a way of referring to objects, services should be provided for locating particular
objects and discovering how to access those objects.

This dissertation addresses the issues of providing such a name »erviee1 for a widely distributed
computing environment. It progresses in three stages: First, general techniques for managing names
in a distributed manner are developed. Second, the performance of such techniques for large u<une
services is analytically modeled. Third, a client's level of performance is enhanced by introduc-
ing caches of namirg data. The next section discusses the nature of name services, providing the
background for »Le remainder of the dissertation.

f.\

'Throughout this discertatioc. terrtis appear in italic« when they are first mtroduced: their definitions are reproduced

in the glossary for later reference.

^->lv-l^Is'-l-"*!.^^^ ■V-L^'-^JZ-V-L'-V-^^'^'^V-J^J-J'"1,"-",'-^J"'J"^'

1.2 Name Services

1.2.1 Role

A name $erviee enables its clients to name resources or objects and provides facilities for accessing
intonsdtion about these objects. The term object will be used Lereafter to refer to anything that
deserves a name. Both physical and logical entities may be objects. For instance, computers, file
servers, printers, disk drives and files can all be objects. Processes, services, distribution lists, and
computer messages can also be objects, as may computer programmers, .iperators, and tectmiciana.
Some objects exist within the bounds of the distributed computer system, while others havt a life
of their own. Note also that some objects are active, such as a process executing a program, while
others play a paitivt role, and henc* must be acted upon and managed by active objects.

The eiient/$erver model of distributed computing has become popular in describing relttionnhips
between active objects. Server» offer services to elienta that may make use of those services. Often,
an active object is both a provider of some services and a client of others. Since servers and clients
may exist at various locations in a distributed computing environment, means must be provided for
establishing liaisons betweeu them.

The name service is a "master" service, which acts as a rendezvous point for other servers aud
clients of the services provided by those servers. Services can be made available to the genera!
community by regütering them with the name service. The information presented on the "regiatratiun
form" includes the name of the service and information needed to make use of the service. A client
of a service may obtain this information by contacting the name service and presenting the name of
the desired servico. From that point on, the client and server may establish a direct connection to
conduct their business.

The name service thus enables other services to be identified and accessed in a uniform way
[Abraham and Dalai 80]. Members of a large distributed computing community need only know how
to access the name service in order to gain access to a multitude of services indirectly through the
"well-known" name service. For passive objects, the name service maintains information that allows
them to be manipulated and shared by specialized services.

A name service, described here as a general name management facility, provides more than the
usual name-to-address bindings. It subsumes services such as directory systems for electronic mail,
file name managers, and database catalog managers. These services can be viewed as name services
specialized for a patticular application domain; for example, the catalog manager for z distributed
database management system maintains information about named database objects, such as their
locations, access controls, and statistics used for query optimization [Martelia and Schreiber 80].

Muck of the current confusion and difficulty in interconnecting existing distributed environments
s>-ms from the fact that various incompatible name services are being employed for widely-used
applications, like mail. Much can be gained from adopting uniform, name services. However, the
question of whether a single general name service should be used for all object» whether specialized
name services should continue to exist with a global name service used to locate the more specific
services is difficult to answer. The choice is not a critical one to the jscussions that follow, as the
issues remain the same.

1.2.2 Names

1.3.3.1 Properties

Simplistically, a name is a character string that identifies an object. However, there is a general
lack of consensus about what properties distinguish names from other types of identifiers. John
Shoch made the following incisive, albeit vague, distinction between three types of identifiers used in
computer networks [Shoch 78]:

•^•:-.1-.;^AWA-.
..•, X^CCC*A^'.'.V%. V äOX^A,V\'CVIVCVW.VA\ VIAV^ A A'J^V* A'^ k^li^iA k^.'^ ,^... ^V^^L^^L'-^-.V A MtJtMt

l,'r^r,vi.»v\VT V"i v. */" ^•", ^~ we&SGC&m^fmmtr^Gmnemamemm^mni-vs »-v TgyJTJ<HJ >r' V-'TT-F.'-T»:/?'-ig^--y r

' "The nom« of a .source indicates what we 9*>ek,
an addreti indicates where i^ 's, and

a route tells us how to get there."

Jerome Saltier, on the other hand, suggests a broader use of the word "name" and portrays the
relationship between names and addresses as bindings; that is, he defines an object's "address" to he
a "name of the object it is bound to" [Saltzer 811

This dissertation draws a simple distinction between names and addresses: names are chosen
by users, whereas addresses are assigned by the system or system administrators. This distinc-
tion complies with Shoch's basic terminology and resembles Richard Watson's distinction between
human-oriented names and machine-oriented identifiers [Watson 81]. Historically, the use of names
in communication networks emerged as a convenience to humans, who find it difficult to remember
numbers denoting the addresses of network entities. Names, as characterized herein, may be:

i readable by humans and of mnemonic value,

• independent of network locations.

The first property arises naturally since humans tend to choose names that desc.ibe their referents
[CarroU 78]. The second property allows an object to migrate to a new location in the distributed
environment without changing its name, and hence without requiring changes in others' references
to the nai^d object3.

The interpreta ja of names presents additional properties: A came is unamhiguoxu if and only if
it refer, to at most one object. That is, the same name canno. be used by different clients of the name
service to refer to different objects. A name is unique if it represents the oniy name for its referent.
Several non-vnique names may identify the same object. Often, in such cases, one i.ame is recognized
as the preferred name and the others are called aliasn or nickname». Note thai; some people use the
terms "unique" and "unambiguous" interchangeably. As defined here, ambiguity corresponds to a
one-to-many relationship between names and objects, whereas non-un'.iueness suggests a many-to-one
binding.

A name is said to be -'.tbal or absolute if it is interpreted in a consistent manner by all clients
and services, regardless o. eir location in the environment or other factors. Absc'ute names may
be freely passed around fro;, jbjecc to object without affecting their interpretation. On the other
hand, relative names are interpreted according to some state information.

The name services of interest in this dissertation manage unambiguous names so that dialogues for
resolving cmbiguities are not required. In addition, they can guarantee the uniqueness or absoluteness
of names, but the general mechanisms do not assume that these properties are always desired by
applications making use of a name service.

1.3.3.2 Structure

The convention adopted for naming objects dictates the syntactic representation of names, as
well as their semantic interpretation. The set of names complying with a given naming con* nfion
is called the name ipaee.

Names are commonly structured as a series of alphanumeric labels interleaved with various sep-
aration ■haractsra. Although many separation characters are in common use in exisiing naming
convent ms, including '@', '%', ':', '.', 7'- and '!', the '.' will be used for simplicity hereinafter,
except .i cases where a specific naming convention is being discussed. Thus, the name "A.B.C"
consis' of three labels, "A", "B", and "C".

-'Addresses may be locatioo-iudepeadeut as well: these are occasionally referred to as logical addrrjats Rosen 81 .

Some recent proposals purporting new approaches to name management are really suggestions for managing logical

addresses in the communication transport layer Cheng and Liu 82! Cheng 84] Chealey and Rom 83;,

^p^3r"jr-.«r">Tii "et«* «vi «.TT-IVT^ »Ainarrj-» .-jr-T^>--jt Vi''J'J' '.* '.»"^Jr'yf'J~y,'J ~-g'^'r.''TJ»nn7'^t/Jl,VUVI.nR'W TIUVLTHV-'JUlV^TWifUyj WVIff.

A component of a name is a substring of that name composed of one or more labels and the
embedded separation characters. The name "A B.C" contains the following components: •'A", "B",
"C", "A.B", UB.C", and "A.B.C".

Abbreviation» are short forms for names that may be used in certain circumstances as a substitute
for the complete name. An abbreviation differs from an alias in that it is a component of a name,
that is, syntactically derived from the name, and is not treated as a fully qualified name. As such,
abbreviations are not generally recognized by the name service. Usually, abbreviations are provided
by an application as a convenience (o human users, who '*'» not like to type long names, and converted
in an application-specific way to a fully qualified na- ore being presented to the name service.
As an example, consider a mail system that names .1» J recipients according to the convention
"user.host"; the system may choose to accept a name of the form "usei" as an abbreviatio . for
"uaerthis-hoet".

1.2.2.2 Contexts

Names always exist within some context. A context can be loosely defined as the environment in
which a name is valid. In many programming languages, the notion of a context is instantiated m
the «cope of a variable. In distributed systems, contexts represent a partitioning of the name space,
often along natural geographic*! or organizational boundaries. A name mav naturally occur in more
than one context, and contexts may be nested. For instance, the login name "terry" exists within
the contexts of both "Berkeley" and "Xerox". In turn, "Berkeley" exists within the context of the
"University of California", which exist J within the couttxt of <J1 universities.

A component of a name may denote a context in which other parts of the name exist. Such a
context is called an explicit context since it is explicitly represented in the structure of the name.
For example, irven the name "A.B.C", "B.C" might be viewed as a name existing explicitly in the
context of "A".

On the other hand, a context that is not an explicit part of the name is called an implicit context.
Relative r aming conventions involve interpreting a name according to some implicit context. Only if
impücit c mtexts are universal can absolute naming conventions be attained. The name service itself
may be oie example of a global implicit context.

The "dot" notation used for delineating the labels of a name does not contain enough information
to indicate the contextual interpretation of the name. For one thing, some naming conventions may
choose to nest contexts left-to- right while others use right-to-left associativity. Moreover, not all of
the labels of a name necessarily represent contexts. In this dissertation, a name will be presented in
the form "context(subname)" when the contextual structure of the ncme is important. For example,
the name "A.B.C" could be expressed as "A(B.C)", indicating that the subname "B.C" should be
interpreted in the context of "A". Alternatively, "C" could exist in the context of "A.B", or "A.B"
could exist in the context of "C"; these would be written as "A.B(C)" and "C(A.B)", respectively.
If the three labels were nested contexts, the name might be "A(B(C))n.

With explicit contexts, a sufficient condition for achieving unambiguous names can be recur-
sively given as follows: the name "contextfaubnamej" is globally unambigrious if the subname is
unambiguoos within the context, and the context has a globally unambiguous name.

1.2.3 Object attributes

The information maintained about a named object by the name service consists of a set of at-
tribute) for the object. Object attributes have both a typ« and a value, where the type indicates the
format and meaning of the value field. The name service does act attempt to interpret an attribute
value. Thus, applications making use of the name service must agree on tho structure and semantics
associated with object attributes. Agreeing on the format of attribute values is particularly important
in a heterogeneous environment where machines have different word sizes, number representations,

\ '. •'. -". •% Co'o"- "'- *'"* ■^- ''"•o*" ""V " - '"o^* ■*. •"-"'«'^^t* ^% ^- r^^ ■* --"--". ',\ *'»'\ r^- -'. *"• "^oi^". ■

.■ wmnvm ivtaaymvr'jwjiu i VJW j-mimum

bit orientations, and so on.

Names that have a list of names as an attribute, generically called group name«, are used for such
things as mail distribution lists and access control lists. One way of representing these membership
lists is with a single attribute of type "MembersAre'1 that takes a list of names, perhaps separated
by commas, as a value. Alternatively, each member could be listed as a separate attribute of type
"HasMember". The first representation makes it easy to enumerate the memy ;rship set, while the
secoi:d is move convenient for adding and removing individual members. This illustrates the amount
of freedom available in choosing various attributes and their representations.

Generally, the type» of attributes for an object vary with the type jf the object. For instance,
information about a user, including anything from his office phone number to his address for receiving
electronic mail [Fe-nler 77], differs radically Lorn information about files [Mogul 84] [Leach et al. 82]
or database objects, such as the data's location, structure, availability, and usage [Allen et al. 82]
[Martella and Schreiber 80] [Lindway 80]. The name service may choose to restrict the types of at-
tributes or require certain attributes for given classes of objects [Cooper 82].

In a layered system, such as the Open Systems Interconnection reference model adopted by ISO
[ISO 81], an attribute for an object often represents an identifier to be presented to the next lower
layer. The binding of names to network addressee, which motivated the conception of name services,
represents a good example of this. For communicating with a object, one might need an attribute
for the object of type "InternetAddress", whose value is a communication socket particular to the
communication protocol being employed. Using the DARPA Internet Protocol [Postel et al. 81],
the "IntemetAddress" attribute for a host would have a 32-bit value; Xerox Network Systems, on
the other hand, use 48-bit internet host addresses [Dalai and Prirtis 81). In some cases, an ob-
ject may have severaJ attributes of type "InternetAddress"1; for instance, mapping host names to
several addresses is useful for packet radio, multi-homed hosts, and partitioned networks [Cerf 79]
[Sunshine and Postel SO] [Sunshine 821. Additionally, for internetworks that support several diverse
families of commtmication protocols, an attribute "SpeaksProtocols", whose value is a list of protocol
types understandable by the named object, may be needed.

As an example of attributes at a higher layer, ctmaidcr electronic mail systems that
wish to name mail originators and recipients independent of the locations of their mailboxes
[Garcia-Luna and Kuo 81] [Kerr 81] [Schicker 82) [IFIP 83] [Sirbu and Sutherland 84] These sys-
tems might use the name service to bind a user name to the name of the host computer on which his
mailbox resides. In particular, the value associated with a "MailboxResmesAt" attribute would be a
host name, which could then be piesented to the name service to obtain the hort's "IntemetAddress"
attribute. By modifying the value of their "MailboxResidesAt" attributes, users can change where
they receive their mail without having to inform their correspondents.

1.2.4 Operations

The basic operation of a name service, then, is to map an object's name to attributes for that
object. A simple operation to do this. Lookup, takes the name of an object and the desired attribute
type and returns any attribute! of the given type that are associated with the named object. Also,
mechanisms must be provided to dynamically update the set of attributes for an object. For example,
an Update operation might take a name and attribute as parameters along with an indication of
whether th^ attribute should be added, removed, or modified in the name service database.

Addiüonaily, name services may have special routines for manipulating group names, such as
adding oi deleting members; enumerating the individual members of a group can be an expensive
operation if relegated to application programs, especially if groups contain other groups as members.
The name service might wish to have operations that distinguish between aliases and preferred object
names. Also, in order to guard against different objects being inadvertently assigned the same name,
the object name should be registered with the name service independent of the object's attributes.
In general, various operations on different types of objects and attributes may exist to facilitate

' ■ • iV»VwtVA'lv;Ivl3^^-^ ., .. . ^■.■V/^V^^\J-^,^L--'V:^--.. ■ v'-^y'vl^'v^-j-l

« vi^v ^v^VT^ Tv y\ iF^' ^ TJ'^.^^^ ~. *^.- » . • ,^^i '\.- ■^.™^'V'j^\r^"/

typ« checking, access controls, consistency, and concurrency. The set of operations alloweci by a
name service can be as rich or baroque as those of any data storage facility. Furthermore, closely
related services, such aa authentication facilities [Needham and S:hroeder 78], may be included in
name services [Birrell et ai. 82]. The clearinghouse client interface, providing doiena of operations
[Oppen and Dalai 83], is a good example of the range of operations that may be desired.

l.b The Thesis

Name services to support large distributed environments must themselves be structured as dis-
tributed systems. The advantages of distribution are well known: modular growth so that the name
service can meet the needs of a continually expanding community, availability through using multiple
processors so that the critical name services remain available to clients, reliability through redundancy
so that valuable name service information is not corrupted, autonomy so that various organizations
may cooperate in the high-level management of objects without compromising their internal security,
and performance enhancements achieved through placing the name service information geographically
close to where the interest in that data lies.

This dissertation develops a framework for building distributed name services to aid the manage-
ment of objects in environments characterized as being large and diverse. The projected computing
environment contains large numbers of networks of various technologies interconnecting a sizeable
computing community. Vast numbers of diverse objects m&y he named and shared by members of
the widely-distributed community; these objects come under the administrative control of ? diversity
of organizations p^ticipating in the environment. The facilities for storing and manipulating objects
range from large mainframe computers to small personal workstations. Generally, end-to-end com-
munication costs dominate the cost of interactions between distant sites. Environments of this sort
are emerging with technological advances in computing and communications. The size and diversity
of such computing communities place strenuous demands on name services.

The major thesis advanced and addressed by the research described herein car be simplistically
stated aa follows:

Physically distributed, but logically centralized, name services can be provided in a general
and cost effective way, even for very large, geographically dispersed computing communi-
ties.

A name service that supports this claim must solve the following principal problems:

• Name resoiution: an object and its attributes may be stored at various, possibly several, loca-
tions in the internet; the name service must be able to determine these locations when presented
with the object's name;

• Administrative controi: administrative entities should govern the placement and protection of
their objects; autonomous organizations cooperatively participating in the distributed commu-
nity wish to retain control over the selection of trustworthy locations to store the attributes and
names of their objects; particularly sensitive information should only be accessible by certain
name service clients;

• Overhead costs: neither the size of the components of the name service at individual sites nor
the number of interactions between components should be directly proportional to the size
of the environment; although a name service may manage large numbers of objects and their
attribvtes, small workstations with limited resources must be able to participate in and make
use of the service;

• Adaptation: internet computing environments are continually evolving and aiding in size,
either by the participating organizations acquiring new computing equipni - or by their in-
terconnecting to othe; computing environments; the management of the name space must be
flexible enough to gracefully adapt to changing demands:

■■vr-^.-TT IJ"«"*" Fj^jirjcji^p iw tn»" "y ^.'vr/'fjyri

• Perfonnance: reasonable response times for accessing name services must be achieved; difficul-
ties m obtaining reasonable response times arise due to the physical distribution of the envi-
ronment and the cost of communication between distant sites; good performance is extremely
important for the name service since it plays such a vital role in the overall system.

The next chapter describes existing name services and reflects on how they fail to solve some or all
of ihese problems for large and diverse environments.

The remainder of this dissertation embarks on a path to substantiate the major thesis. Chap-
ter 3 develops a basic architecture for distributed name servict-3, providing a common framework in
which later chapters address the principal problems. It broaches an important distinction between
attribute data, information about named objects whose placement is controlled by administrative
organizations, and configuration data, information managed entirely by the name service to locate
attribute data. Chapter 4,s examination of clustering to reduce the information needed in each name
server for resolving names produces a general and powerful model of name resolution: structure-free
name resolution. Prototype implementations of mechanisms for supporting this model are presented.
Chapter 5 proposes a performance model of distributed name services that identifier factors con-
tributing to the cost of name service operations. The model is applied to a sample environment to
derive quantitative projections of the effect of name server placements, replicated data, and various
assignments of authority on name service response times. Chapter 6 reports actual measurements ob-
tained from the Grapevine registration service and uses them aa input parameters to the performance
model. Chapter 7 explores techniques for caching name service data at client sites to further enhance
their performance. Treating caches as hints alleviates the cache consistency problem, while main-
taining minimum accuracy levels guarantees performance benefits. Lastly, Chapter 8 recapitulates
the principal problems outlined above along with their solutions.

■ i._i ----- - * _ • . ■_. X. —2 ^V.-tÄ.i^—JS ., 2 - ^ » ■ • .. ^ .. B _* - « „-» ^-i uf !a *■ i '■ *■

- »-■»-.■ T«--TTV—-sr-Tc""- -Tä—-j-^» —?. H?i 1gliAJ"JJIMiT,W K* K^fL^V (VT^ X."" ;T"-.Til "T^7 "^ »T *■ VJC: t" <' «.

Chapter 2

Name Service Designs: A Survey

Distributed name services have recently emerged in which a set of name servers col-
lectively manage a global name space. The distribution of responsibility for parts of the
name space, as well as the mechanisms for locating names, depends heavily on the name
structure.

2.1 Existing Name Services

The desire to refer to objects by name and exchange information about these objects h is resulted
in the development of network name services for severed existing distributed environments. The major
identifiable name services that have been implemented and documented are briefly summarized in
the following subsections. Later sections of this chapter present in more detail the various aspects of
these systems along with other proposals and designs for naming mechanisms.

2.1.1 NIC Name Server

The ARPANET [Roberts and Wessler 70], one of the first geographically-dispersed computer net-
works, has experienced a slow progression of name services. In the early days, the ARPANET Network
Information Center (NIC) was established to maintain information about the network, including the
master database of host names and their respective addresses. Every host stored a complete copy of
this database, and the administrator of each host was responsible for updating its local copy when
the master changed. This boat table allowed members of the ARPANET community to name hosts,
rather than refer to them by address, when transferring files between hosts or logging into a remote
host.

With the growth in size of the ARPANET and its expansion into the DARPA Internet
[Hinden et al. 83] [Cerf and Cain 33], maintaining up-to-date host name to network address map-
pings became increasingly difficult on individual hosts. The development of an experimental NIC
Name Server slightly alleviated the situation by allowing the host table information to be retrieved
incrementally via network protocols [Pickens et al. 79b]. This service eventually became the NIC In-
ternet Hostnames Server [Harrenstien et al. 82|. The ARPANET boat table stored by the server has
been extended to include addresses for networks and gateways, as well as additional host information
tuch as what protocols a particular host speaks, an indication of the services available, and what
operating system it runs [Feinler et al. 82].

The NIC also provides services for obtaining personal information about ARPANET uaers. The
NICNAME/WKOIS server supplies such information, including anything from a person's office phone
number to his address for receiving electronic mail [Harrenstien and White 82|.

I»--V-..V ^'-^ .i. v'IV--^I^A~~^^ , _• . ■ .-■ «'^-'-.''A j ** J ■-■. .^ ^'.-_;., ^r. .'-^- ^- » - IT- - > *.. ^- g- « ^ ■ t » ^ . "w ■*. n/^r^ ' ..'s..." ■ " ' - ft « ---■" - s.'J.J-J- »'^V. -'» j* **- g". A. ;"■ £M *'* T"' £m ii*iVä* (LfcJ «-"- ■

2.1.2 DARPA Domain Name System

To t'lis day, although the inadequacies of central administration are widely recognized by the
DARPA Internet community, the master host table is still centrally maintained by the Network In-
formation Center. Fortunately, plans are underway to switch over in the near future to a decentralized
scheme tor managing the host information [Postel 84], The new Domain Name system will permit in-
formation on network entities to be distributed and replicated; the responsibility for its management
will reside with the various administrative organizations comprising the DARPA Internet [Postel 84]
[Mockap:tris 83a] [Mockapetris 83b].

Included in the transition to decentralized name management is the adoption of the Domain
Naming Convention [Mills 81] [Su and Postel 82] for naming electronic mail recipients as well as
hosts. The Domain Naming Convention calls for a tree-structured name space in which each node of
the trr-e has a label. The domain name of an object is simply the concatenation of the labels starting
at the root and following a path through the tree; labels are listed from left to right and separated
by dots. The Domain Name System stores information associated with each node of the tree as a
set of "resource records" containing type, class, and data fields. It manages mailboxes, aliases, and
group names in addition to the information currently maintained in the DARPA Internet host table.

2.1.3 BIND Server

The Berkeley Internet Name Domain (BIND) Server [Terry et cd. 84] is an implementation of
the DARPA Domain Name System for Berkeley UNIX. As such, it adheres to the Domain Naming
Convention for identifying objects and to the basic set of operations designed fcr retrieving object
attributes. However, unlike the Domain Name System which maintains a read-only database, it allows
updates to the name service database to be applied dynamically using a primary update scheme vith
secondary snapshots for replicated data.

2.1.4 PUP Name Lookup Server

A decentralized name-lookup service was provided early in the development of the Xerox Pup
Internet [Boggs <t a/. 80]. Servers on each network manage an identical database. Updates performed
at any server are advertised to all other name servers using broadcast [Boggs 83]. This service still
fills the needs of the PUP Internet, while Xerox' Network Systems [Dalai 82] have moved to a more
decentralized clearinghouse service.

2.1.5 Grapevine

The Grapevine system [Birrell et al. 82] developed at the Xerox Palo Alto Research Center can
be viewed as two systems in one, a mail system and a registration service. The latter provides name
services designed primarily to support the mail system, including resource location, authentication,
and access control. Names in the Grapevine environment identify mail recipients and are of the form,
"F.R", where "R" is a registry name and "F" is unique within registry "R". Registries are intended
to reflect organizational divisions.

A registration database that maps names to information about the names, including distribution
lists and access control lists, is distributed and replicated among the many Grapevine computers.
At this point in time, the Grapevine registration service might be considered the only regularly-used
distributed name service.

^i±:

-j ™# '.f J 'r^wrr. --rv r »• mw3 >.-. ■-. wwwa »i FI Tr^fj»,-

10

2.1.6 Clearinghouse

The clearinghouse [Oppen and Dalai 83] is a decentralized service for locating named objects in
a distributed environment. Like Grapevine, it was developed by Xerox, and the two systems have
many things in common. In fact, clearinghouse's design was modeled after the Grapevine system
except that clearinghouse names have three parts, "L^DiO" where "L" represents the local name,
"D" the domain, and "0" the organization. The clearinghouse designers stress that domains and
organisations, like registries in Grapevine, are logical rather than physical divisions.

Xerox's clearinghouse strives to serve as a general purpose binding agent. It maps an object's
equivalence class, consisting of a distinguished name and associated aliases, into an arbitrary set of
properties, where each property is an ordered tuple (Property Name, PropertyType, Property Value).
Clearinghouse's "propertiea" correspond to "attributes" as defined in Chapter 1. Property names,
corresponding to attribute types, are standardized so that similar services can be easily identified.
The only property types distinguished are 'individual", an uninterpreted block of data, and "group",
a set of names. The client interface supports many distinct operations for manipulating entities such
as names, aliases, individuals, groups, and group members. Different operations on different types
exist to facilitate type checking, access controls, consistency, and concurrency.

2.1.7 CSNET Name Server

One component of an effort to connect computer science research institutions with a long-
haul computer network called CSNET wab the development of the CSNET Name Server
[Landweber et al. 83] [Solomon et al. 92]. Its primary function is to support mail applications, that
is, aid in locating mail recipients. The CSNET Name Server maintains a centralized database con-
taining keywords supplied by users to describe themselves. A mail recipient can be unambiguously
identified in a location-independent way by supplying a suitable set of keywords, which are mapped
by the server to a mailbox address "userdsite". However, most mail users bypass the name service
and simply use mail addresses directly. The major utility of the name service is in discovering the
proper mail address of a particular person given descriptive information about him.

2.1.8 Cambridge Name Server

The Cambridge Distributed Computing System [Needham and Herbert 82] relies on a name server
for translating unstructured names of services and machines into ring addresses. Roger Needham and
Andrew Herbert describe the name server as "the most fundamental of all of the services provided
by the distributed system" [Needham and Herbert 82). In their environment, for instance, the name
service operation is crucial for booting other services and for allowing a machine to discover its own
address. When responding to service lookups, the name server indicates the protocol associated with
the service, as well aa the machine on which the service runs; however: the name server does not
guarantee that the service is currently available. To achieve high reliability, the name server program,
along with an initial name table, is stored in the read-only memory of a dedicated machine.

2.1.0 COSIE Name Server

The COSIE Name Server, designed and developed for use in a distributed office system [Terry 82j,
maintains a database of named attributes for Aa object. In order to support many different clients,
the name server provides a very simple set of operations and places no restrictions on the syntax or
semantics of the names it stores. It manages group names as well as individual names; group names
have been used for lists of teleconferencing participants, mail distribution lists, generic services, and
even to keep track of the users of a shared object (an alternative to reference counts).

i-'^Vf>^ .^V^AO'^-^^."^^^

il

2.r.l0 R* Catalog Manager

The catalog manager for R*, a distributed database management system developed at the IBM
San Jose Research Lab, maintains information used in distributed query processing. In addition
to mapping names to the locations of database objects, it provides information about the objects
such as the available access paths, their data schemas, the authorized users, and usage statistics.
An object's system wide name has four components, "userQuser-site.object-nameQobject-site". The
"nserQuser-site" component permits different users to select object names that do not conflict, while
the "object-site" component partitions the authority over objects. Name completion ndes allow parts
of the name to be left unspecified by database applications.

2.2 Structural Components

A general model has evolved for building name services in which a set of active entities called
name servert share the responsibility for providing the service, while clients access the service through
name agent».

2.2.1 Servers

Each name server manages part of the name space and runs on a single computer; interactions
with other servers and clients transpire via the communication network, 'n the case of a centralized
service, a single name server manages the complete name service database. Although several existing
name services are provided in a centralized fashion [Harrenatien and White 82] [Harrenstien et al. 82]
[Solomon et al. 82] [Terry 82], there is little argument that name services to support large and diverse
computing environments should themselves be Oi-ganized as distributed systems [Clark 82].

In a distributed name service, several name servers collectively manage the name space and
support the basic set of operations. Generally, the name servers act as peers in that they all play
an identical role in the system. That is, the function of the service is not partitioned among servers;
the control and data are »imply decentralized. All name servers present a common interface and
accept operation requests from any client, though the contacted name server may not contain enough
information to process the operation locally. Grapevine, the clearinghouse, and the Domain Name
System are all organized in this manner.

Differing attitudes exist aa to whether the name service should use dedicated machines or run on
hosts along with other services and clients. For instance, the CSNET Name Server is a dedicated
host, and the Grapevine system runs on a collection of dedicated machines. On the other hand,
the R* distributed data management system, including its catalog management component, executes
on all hosts. The V-System, developed at Stanford University, adopted a policy where each server
for a class of objects provides the name service for those objects; thus several object-specific name
servers might reside on a workstation [Cheriton and Mann 84]. The Cronus Distributed Operating
System also requires a name server on every machine, but for availability reasons; the designers argue
that "it should be possible to access an object whei. the site that stores the object is accessible"
[Hoffman et ol. 83].

2.2.2 Agents

Clients of the name service prefer to be unaware of its distributed nature, and hence interact
with name agents that assume responsibility for communicating with remote name servers. Name
agents thus act aa intermediaries between name servers and their clients, allowing client programs to
be written as if the name service were locally available.

The notion of a name agent has been provided in several systems under various names.

'."•iT V^-vT'i^'^.^'k'" 'iT^*''"'r^rTK^t mjt \% "J.?^ mf'r 7

12

The Grapevine system has similar components called "GrapevineUser" [Birrell 83j. the COSIE
Name Server calls them "us« interfaces'1 [Terry 82], the DARPA Internet Domain Name system
has "resolve«" [Mockapetris 83A], the CSNET Name Server uses "name server agent programs"
[Solomon et at. 82], one proposal calls for "application interface processes" [Su 82], and the cl'aring-
house requires "stub clearinghouses" to be resident in every client [Oppen and Dalai 83j.

In cases where a name server and its clients reside on the same machine, as would arise with policies
that require a server on every host, the clients' name agents might be unnecessary. However, besides
speaking the proper communication protocols, name agents may perform additional functions such
as maintaining a detailed knowledge of the name space and of existing name servers. One proposal
suggests using name agents to negotiate for resource availability and compatibility once a resource
manager is located through the name service [Su 82]. Chapter 7 addresses the issues of caching the
results of recent name service queries within name agents.

The interface provided by a name agent to its clients may mimic the interface provided by the
name servers, or may be tailored to a particular application. "Value-added" services provided by
the name agent, such as caching or resource negotiation, undoubtedly require interfaces to new
operations.

Each name service client most likely utilizes a single name agent. However, each name agent
may either serve a single client or be shared by different clients in the same locale. These two
organizational choices are depicted in Figures 2.1 and 2.2.

If the name agent is structured as a set of subroutines that are simply linked into the client
program, then each client has a private name agent. On the other hand, a name agent that is shared
among clients may be incorporated into the operating system kernel, with system calls used to invoke
name service operations, or may exist as a separate process and be accessed via an interprocess cotn-
murication (IPC) mechanism. For example, the initial BIND name agent, a domain name resolver,
was implemented as a set of C language library routines [Terry et al. 84]; current efforts are under-
way to migrate the resolver to a separate UNIX process so that a shared cache can be maintained by
the name agent.

2.3 Functional Components

A name service can be functionally decomposed into three components: communication, database
management, and name management. A name service must be able to store data reliably and com-
municate among servers and between servers and agents. Name management builds upon database
and communication technology to allow the distributed name service database to be queried and
modified.

2.3.1 Communication

Name servers and name agents reside on various machines distributed throughout the environ-
ment and hence must rely on a communication protocol for their interaction. The usual three styles
of communication exist for the server/agent and ser-er/server protocol: using self-contained data-
gram» for exchanging data, establishing virtual eireuita to transmit byte-streams, or employing remote
procedure eaila to invoke remote operations in a similar manner to local ones. Selecting the proper
protocol involves weighing the cost of the protocols against the benefits they provide. For instance,
datagrams are generally unreliable, though less expensive than virtual circuits, which provide re-
liable data transmission. Remote procedure calls are conceptually simple to use because of their
resemblance to local procedure calls: nevertheless, the requejt-response paradigm enforced by remote
procedure calls may not always be desirable.

In practice, different protocob may be desired for different modes of communication taking place
between name servers and agents. For example, reliable communication may be unnecessary for

■^■^gtg^ j^y #^#-''^-^^'--ya^J? aL,^J"SW*^.^^^W^t^wui>-J"^"^»-W ■MM^.tB. ■ J-KST-* i-mv-m

client

name
agent

name
server

client client

name
aqent

name
aqent

X 1
client

name
a^ent

name
server

name
server

Figure 2.1: Individual name agents.

Lines represent loosely coupled interfaces while common edges represent tightly coupled interfaces.

M^^£t&:i&<&^ :.. &&£&

^ TJl»^. «V J" ^r'T-rf« ■ ' TJ» -J» ^i* ^*i ^ ■. ^ »*-*!."• V^iT^ -^ O» ."= L'V"1."WW^"^.'

14

client client

name acient

client client

name a^ent

A *: ,:A,,X;^:,::;::::, ;,;,;.,.:v^v/^^7^

{NTERNET

name
seruer

name
server

name
server

Figtue 2.2: Shared name agents.

Lines represent loosely coupled interfaces while common edges represent tightly coupled interfaces.

All

.-- .'•." p. -*- iiäüü

HIUiU^JIVMWKF*>-"sr»tr> -»v^i"^«^"v^5"^^r'IT"ST•*'T'"ir»■ ri»»• ^v-VTJTporr w-.jr»wT»■ •■»-«— «■»„-HJI-u»r_»-■ ^num■"-«^-■»■'«-■-JIR«^«'-«-

15

invoking name service operations since they can be easily made idempotent, allowing the operations '£/
to simply be retried in case of communication failure. However, critical communication, such as the [«
exchange of authoritative data between servers, should be reliable. ggj

Grapevine [BirreU 83] and R* [Lindsay et al. 84] use byte stream protocols for communication so BP
that the cost of authenticating communicants can be completely incurred at connection establishm it. |-"'"
The OA.RPA Internet, on the other hand, has traditionally used datagrams for invoking name service r'v
operations [Harrenatien 77| [Postel 79]. The Domain Name System, however, specifies that a virtual '.'/
circuit should be established if the name service response is too large to fit in a single datagram ^-'J

[Mockapetris 83b]. It also uses virtual circuits for reliably propagating updates to replicated data. ^,''
To accommodate a diversity of clients, the CSNET Name Server accepts queries in a variety of forms, 9ß
including electronic messages [Solomon et at. 82]. .•^,

2.3.2 Database management

One of the major responsibilities of a name service deals with managing the name service database |j|
of objects' attributes. A lot of work has been done by the database community in developing tech- ^
niques for query processing, concurrency control, and transaction management [Gray 78). However.
surprisingly enough, the COSIE Name Server [Terry 82] is the only one of the services discussed in ." '.
this caapter that uses a general purpose database management system to store its information (aside
from data dictionaries); perhaps because database management systems have reputations for being >'v
big and slow, perhaps because complex query languages are not needed to support the simple name _^
service operations, perhaps because name services have very simple data Schemas. H

Althov/h database transactions [Lampson 81] are useful for implementing atomic name service ,>''.
operations, reliable data storage may not always be necessary. For example, the COSEE Name Server
[Terry 82] makes a distinction between temporary and permanent objects. Updates to attributes of .•.".
permanent objects use the underlying database management system, while temporary object infor- '.'•]
mation is placed in the in-core buffer pool, but never committed to the resident database. Registering MM

temporary objects is thus faster than registering permanent objects since a database transaction is "
not required. Registering objects as temporary is useful for processes that rendezvous through the /•,
name server or for distributed programs t'^at are being debugged. In both cases, the permanence ''■>"
of the information is neither required, nor desired. For example, programs that are being debugged ."%
often fail in ways that prevent them from unregistering themselves with the name service; if registered jV
as temporary, the information associated with these programs i* autom-itically purged from the name ^
service database when its buffer storage is reused. ^P

Several techniques for managing repücated data in a distributed computing environment have '•'.
been proposed and thoroughly discussed in the literature. Bruce Lindsay et al. [Lindsay et al. 79]
and Elmar Holler [Holler 81] provide good overviews of these techniques. These general algorithms
for maintaining consistent copies of replicated data can be adopted for the distributed manage- .\.
ment of name service information. However, they assume no knowledge about the semantics of the mit
data being managed. Researchers at Carnegie Mellon University developed a special algorithm for
replicated directories based on Gifford's weighted voting [Gifford 79] that takes advantage of the
properties of name directories to achieve high availability and performance [Daniels and Spector 83]
[Bloch et al. 84]. Basically, they achieve higher concurrency by dynamically partitioning the set of
names stored in a directory and maintaining a version number for each partition.

Also, general replica'ed data algorithms, such as weighted voting, almost cxciiisu'eiy "c"mäi'-«n säjs
strong consistency to be important. The designers of the Grapevine system argue that name service
clients can cope with temporary inconsistencies. Much of the work in the design of the Grapevine V-',
registration service was in designing an algorithm for replicated data that exploits the semantics of • .'•
registration data [Birred et at. 82] [Schroeder et at. 84]. The Grapevine sysiem has a weak notion |A
of consistency amorijj the various replicated copies of a registry. Availability is enhanced by allowing ""v
updates to a registry to be performed at any site and then propagated to all other storage sites. The Ml

^i-^v;-^ ,Nü^-iivi^^-vi^--v-:^

■ v •r\r' r-^v^

16

only guarantee is that all of the copies will eventually converge to a consistent state. Active and
deleted sublists of entries, as well as timestamps, must be maintained in order to merge copies that
have been simultaneously updated. However, conflicting simultaneous updates are not guaranteed
to be resolvable. Greg Thiel developed similar algorithms for merging replicated database catalogs
that have beer independently updated during a network partition [Thiel 83). Again, the goal was to
improve update availability by reducing the consistency requirements.

Lastly, many algorithms for replicated data assume that all data storage sites are always able
to communicate with each other. However, for dlalup networks with very loose topologies, such as
UUCP [Nowiti 78] c: CSNET's PhoneNet [Comer 83], servers may caly be able to exchange updates
at limited times. For this reason, the BIND Server uses z, primary update scheme in which the
responsibility for requesting updates lies with the secondary servers [Terry et al. 34]. For simplicity,
all updates are directed to a prmary server, which transfers incremeptal updates to secondary servers
upon request. The restriction that updates get directed to a single server eliminates the need for
merge algorithms, but reduces update availability and concurrency.

2.3.3 Name management

Several schemes for naming objects have been proposed, though few of the proposals have ad-
dressed the issues of distributed name management. The major aspects of name management include
name dittribution, the assignment of authority for parts of the name space to various name servers,
and name retolution, the mechaniim for locating the attributes of a specific object given its name.
Generally, the structure of name« influences the way in which they are resolved and distributed.

Many naming mechanisms trivialize'name management by utilizing centralized name services.
Others, such as the Pup name service [Boggs 83] or the Mininet system [Livesey 79], fully replicate
the name service information in all servers; name resolution is thus unnecessary since ? ny name server
is able to respond to any lookup request.

Some propooals allow the name service database to be partitioned and distributed, but rely on
broadcast or searches of name servers to find information. Such a protocol for locating resources in
the DARF A Internet has been recently proposed [Accetta 83]. Often, the name service database is
distributed such that each name server manages local objects. References to local objects can then
be resolved by consulting the local name server; resolution of names for nonlocal objects resorts to
using broadcast [Janson et al. 83] [Lyngbaek and McLeod 82] [Gelernter 34]. Bremer and Drobnik
carry this a step further and suggest a scheme in which the environment is divided into regions
where regional directories maintain name-to-address mappings for all objects residing in their region
[Bremer and Drobnik 79]. Name resolution proceeds b» three ifteps: the local name server, which
may contain incomplete information, is consulted; if the desired name is not found, then a regional
server is contacted; if that is unsuccessful, then a request is broadcast to all other regions.

To avoid broadcast but permit distributed data, man/ systems incorporate an object's net-
work location into its name and adopt the policy that a local name server manages local objects
[Lyngbaek and McLeod 82] [Chou et al. 83] [Cheng 84] [Curtis and Wittie 84b]. These location.
dependent name», of the form "local-name^machine'', carry with them the information necessary
for name resolution. Mail systems, including those used in the DARPA Internet and CSNET, have
traditionally accepted such names for identifying mail recipients. RSEXEC, perhaps the first attempt
to create ä network-wide name space for objects other than mailboxes, used this approach to refer
to files on TENEX machines scattered around the ARPANET [Thomas 73].

The R* system require» »ach catalog manager to maintain information about all locally stored
objects and all objects that were created locally [Lindsay SO]. Names are of the form, "'object-
nameQobject-site'', where the ■'object-site" represents the birthsite of the object, not its storage
site. These might be called authority-dependent names since an object is allowed to migrate to other
sites, but its birthsite remains the authority for the object. The birthsite must track the object's
movements so that its name can be resolved. Debra Deutsch also proposed using birthplaces aa a

^•V^V\^V^V^V^ri.^T»^~^j^T"^^;y,i^^^'ln^

17

means foi distributing and locating information about mail recipients [Deutsch 79].

The V-system also uses authority-dependent names, but manages them in a slightly different man-
ner: each server for a class of objects manages the names for those objects [Cheriton and Mann 84].
In order to allow a uniform way for interpreting object names, all names are prefixed by the server
identifier. Names of the form "server.object-name" are resolved by first contacting a local "context
prcux server" that indicates where to forward the resolution request; different servers can resolve the
"object-name" in different ways, though many use hierarchical name spaces with nested contexts.

Systems, such as Grapevine or the Domain Naming System, use location-independent names,
sometimes called domain name« or organizationally-partitioned name«. In these systems, an object's
name is only indirectly associated with the server or servers that manag; information about the
object.

In the Grapevine system [Birrell et al. 82], registries represent the granularity for partitioning
and replication of the registration data; that is, a registry is treated as an indivisible unit when it
comes to storage site selection. Registries can be replicated in several servers, and a given server may
manage more than one registry. A special registry, which is replicated in every registration server,
enables any Grapevine server to determine which servers contain the database entries for a particular
registry. Since object names explicitly contain the registry in which the object resides, all name
lookups require two steps: first the authorities for the name's registry are discovered, then one of
them is contacted. Clearinghouse's distributed lookup algorithm is basically the same as Grapevine's
except that name resolution takes place in three steps since clearinghouse names have three parts
instead of two [Oppen and Dalai 83].

The Domain Naming System [Mockapetris 83a] [Mockapetris 83b] partitions the name space into
"zones". A zone can be specified by the doirain name of its root and the names of its endpoints. If
an endpoint of a zone is not a leaf node, then that node serves as the root of another zone. Zones
represent the administrative divisions within the name space. For example. Figure 2.3 indicates a
couple of zones that might exist on the Berkeley campus. As with Grapevine registries, zones are
indivisible units cf storage, and a many-to-many mapping may exist between zones and name servers.
Thus, the boundaries between zonei indicate possible delegations of authority. The Domain Naming
System resolves names a label at a time starting at the root and traversing down the branches of the
tree. The resolution of a name migrates from server to server in accordance with the delegations of
authority until all labels of the name have been examined. As an optimization, if a server receives a
name lookup request for a name that is in one of its zones or a zone that it has delegated authority
to, the resolution of the name need not start at the root of the tree, but rather can start at the root
of a zone in which the domain name of the root is a prefix of the name being resolved.

The Cronus [Hoffman et al. 83] and LOCUS [Popek et al. 81] [Walker et al. 83] distributed op-
erating systems also support tree-structured symbolic object names. LOCUS has the notion of "file
groups" that correspond to zones; it maintains a network-wide "mount" table for resolving names.
The Cronus designers adopted a policy in which a "dispersal cut" is made through the name space
such that the "root portion" is fully replicated at all sites, and »ntire subtrees below the cut are
stored within a single site. In other words, the entire name space above the cut is a single zone, and
subtrees below the cut represent individual zones, as depicted in Figure 2.4. This enables names to
be resolved by contacting at most two name servers.

2.4 Performance Issue?

The existin0 work on name services stresses functionality, while performance considerations have
remained of secondary importance in most work to date.

^^^>>^^:^s-^^s?^:>^.J;-:,:,: ^^;v^io^^^ *-&L.M.- *^.m*~M. **.■& J.& *.A *. A-^ ^^A- >^C^«. ft_- .*_ 4 _ i__ !

•frryfT^ • "v "P ".• 'wwwww rmiwrmiwrwrm IPJWJWW ri^mrwsnFxwimiww'vii%wftww'Tw3 ;/rj pPlfr^ w-t TI.TPV w-aw-aw-s JTV^ j

18

(root)

Edu Gou Com

computer center zone

Figure 2.3: Domain name apace with «ample sonee.

iMi£^&'X&&£&2'£&v&

nr-Ti-TTT^ir-i «-_ i tv\w-iirwws>nä ws»3TV""J^"J»"• TffT^«j«i wvrrTwj^Tw-r»"j*-j ri a-.'»■: v-; vr

mot zone

dispersal cut

leaf zones

Figure 2.4: Hierarchical name space with dispersal cut.

19

>V>.- ■"■ -"- ■'- -'• ». * •
\'JI Xt.'n^ l^i'i -'.•-'.•."«.' .'«f-jf JJLLJ-'JjL^V^t^i

; w-^ ^rq "n^^rw '^J'^ry T^i^/"^V'i|f^"^^^J^^/T'^"i^/1^rl^/^^f^r^"i7'^^.~'^7^^ "^ "-^"-^ ~.:,"~."* "r
1
,ir' v TTr~'wvT'i-

!>r,»>*r»^~^t~^V"* ,r*\'~*\:'*' \'~*\r,*\.^\r*\

20

2.4.1 Models

Performance models of name services have been noticeably lacking. Typically, the name service
designers or administrators distribute the name space among servers according to their intuition or
experienced observations of the environment rather than modeling various alternatives. The few
recent attempts to analyze distributed name management schemes have been concerned with very
simple strategies.

Yen-Yi Wu studied file directory systems for locating files in networks with either loop or star
configurations [Wu 83] The directory schemes conside ed include centralized directory data, fully
replicated directory data, and some hybrid schemes ba»-d on localized authority and searches. Wu's
model aller ed expected query response tiriss for the vuious directory schemes and network config-
urations to be computed.

The only known paper that discusses the performance of name services in an internet environ-
ment proposes having regional name servers manage a two-part name space in a hierarchical fashion
[Chou et al. 83]. All regional servers store complete information about objects in their local network;
updates are propagated by broadcasts. Chou et cd. introduced a network communication model,
which was used in simulations to analyze the cost of this proposed distributed update scheme for
high transmission error rates.

2.4.2 Measurements

Measurements of distributed computer systems invariably provide needed insights into their op-
eration and suggest ways of improving their performance. Of the name services discussed in this
chapter, only the Grapevine system manages a partitioned and replicated name space with a large
user community. Other emerging name services, such as the DARPA Domain Name system, should
benefit from experiences with Grapevine. As the Grapevine designers put it, "There is no alterna-
tive to a substantial user community when investigating how the design performs under heavy load
and incremental expansion' [Birrell et al. 82]. Some measurements and experiences with Grapevine
have been recounted concerning the administration and reliability of the system [Birrell et al. 82]
[Schroeder et al. 84); no work has been identified in which measurements were obtained to aid in
configuring name services.

2.4.3 Caching

A couple of present-day name services. Grapevine and the R* catalog manager, employ caches
to improve the performance of name service lookups. Grapevine message servers cache hints about
individuals' -referred inbox sites; out-of-date cache entries are easily detected when servers attempt
to deliver a message to a moved or deleted mailbox [Birrell et at. 82]. R* database sites use locally
cached catalog entries in distributed query planning; when the formulated plan is distributed to the
sites involved, version numbers for the catalog entries on which the plan is based can be compared
against the current catalog entries to determine the validity of the plan [Lindsay 80j. Other systems
have suggested the use of caches, but concrete designs have yet to emerge.

2.5 Evaluation of Previous Work

Significant work has been done in the area of communication protocols for accessing name services
and in the area of database management systems: for storing object attributes. The currently unre-
solved problems in designing name services concern how to manage large distributed name spaces.

Contemporary name services are emerging in which the attribute information is both distributed
and partitioned. These planned or existing systems make substantial contributions to the general

-i. t\i..\ ■■..•. <.,-. i-. *-.•.«-_ J- -'-. ^ ■JirjJ-^.-j .•,:.J.'-I VM .« ■»,.«.,--.,.- .-.! .-..v.'-^.^ -uii^i -r j

ö wjl • B-wj, BJI Mwjwi I»J,'# ^yx-^'.'Tjrr^T^^fj^T-^-^Tjrrj^-p. ^^K-^ m^F» » *-» - ■r-'T—w ^^ '

21

techniques needed to build distributed name services. Nevertheless, all of the existing designs fail to
adequately address some of the problems outlined in Section 1.3 for very large and diverse computing
environments:

• iVame resoiution; All name services are able to resolve unambiguous object names in one way
or another. In existing name services that do not rely on broadcast, the process of resolving
names is driven by a name's syntactic structure and dependent on how names are distributed
among name servers. Name resolution always proceeds by successively resolving individual
labels of a name. Unfortunately, existing name services' reliance on syntactic structure in order
to locate an object or its attributes place constraints on the management of the name space;
these constraints prevent solutions for some of the other principal problems from being realized.

As an extreme example, location-dependent names restrict the mobility of an object once a
name has been assigned. Changing the name of an object is an expensive operation since all of
the references to the named object become invalid; hence, object names are generally considered
permanent. Location-dependent names force objects to change their names in order to relocate.

• Administrative controi: Even authority-dependent and existing location-independent naming
schemes provide less than perfect administrative control over the placement of an object's
attributes. All current name services distribute the authority for names to various servers
based on the structure and contents of the name; syntactically similar names, for some similarity
criteria, have the same authorities. For example, in the Grapevine system, all of the names
belonging to a particular registry have the same set of authoritative name servers; in the Domain
Naming System, a name's zone determines its authorities. Because of the syntactic distribution
of names in existing systems, the assignment of a name to a new object is partially governed by
an organization's concerns for the name servers that store the object's attributes. Changing an
obje« ;> name servers requires changing its name or assigning new name servers for all objects
in the same syntactic partition of the name space.

• Overhead coats: Name management schemes in which the entire database is maintained by
a single name server place an unreasonable load on the server, when it is used in large envi-
ronments, due to the storage requirements and the frequency of updates. A few existing name
services are able to successfully manage large numbers of objects by partitioning the name space
among many servers. A potential difficulty arises, however, for naming conventions with a fixed
number of levels. Grapevine, for example, with its two-part name space, requires all servers to
know about all registries; truly enormous computing communities would require a significant
number of registries. The clearinghouse and R* catalog manager face similar problems.

A lack of scalability also represents a major failing of systems that rely on broadcasting name
resolution requests to all name servers. Although David Boggs claims that any network should
provide broadcast mechanisms [Boggs 83], the cost of such mechanisms for large internetwork
environments renders full broadcasts infeasible.

• Adaptation: The inability to adapt to growing communities with changing requirements is the
main deficiency of traditional name management techniques. Existing name services, whose
basic mechanisms have such a strong reliance on the syntactic structure cf the name space, may
lack the flexibility to scale up to very large environments. At best, the system administrators
that configure the name service initially must carefully partition the name space according to
the projected growth of the environment so that no partition becomes unmanageably large.
Name services should be able to be reconfigured if the present servers become overworked or
overburdened with data. With current services, reconfiguration occasionally requires objects to
change their names because the name space is distributed among servers according to syntactic
partitions. As an example of a lack of flexibility, as a Grapevine registry grows over time,
no provisions can be made for dividing its data between different name servers. At least cne
Grapevine registry has already been split, causing some of its members to be renamed.

• Performance: As indicated earlier, very few studies have attempted to measure or predict the
performance of name service operations. Within the framework of most name services, decisions
must be made concerning how to distribute and replicate parts of the r^me space; these decisions

■■>."--
^£*j'.A_-r»_<

v" W «^ m*%m K^J^.*^.«^ ^1" nm^w ^«j'ä»~.'^ <■ it,'

22

drastically affect the response times for name service lookups or updates. The Grapevine
designers have provided some suggestions based on their experiences, but measurement and
modeling tools are really needed to aid in configuring large name services. The utility of
techniques such as caching and data replication can only be determined once the operation of
a name service is fully understood, including clients' referencing behavior.

The DARPA Internet's Domain Naming System seems to come the closest to handling very large and
diverse computing environments, though it has yet to become fully operational. This dissertation
adopts many of the architectural properties of such a service, but develops a more flexible approach
to name management: atrueture-free name management breaks the strong ties between the structure
of names and their management.

'jk.-A. JL-WL.^. ^ •■■!, *.j..'.-''.y J.^^- ■' V- t» i^ ft'» C J"J ;'. £M i* £t £M .lA-.'ijfcAjw'L ^ ■ *■ ^ * ' « ^ ■ X A." X,. ?_ ■ ^: ■- T^ ■k.1

'V1 ryr^'TiF-."»^-*^*.,-*f yy-sr^yy.y,,y* !»■ P-J»**-
1
"^"»^ "'-jti^iv'*t3t"ifc«'«^

Chapter 3

Name Distribution

A basic architecture for distributed name services provides the framework in which
to explore the problems of managing large name spaces. Facilities for internetwork com-
munication and for maintaining replicated and distributed copies of data serve as the
foundation for building distributed name management mechanisms. Structure-free name
distribution, achieved by introducing a special attribute that indicates each object's re-
sponsible name servers, permits more flexible assignments of authority than those based
on the name structure.

3.1 Foundations

3.1.1 A Layered Architecture

This dissertation develops an architecture for building distributed name services, including mech-
ankms for distributing, resolving, and caching names. As in current name service designs, several
name servers collectively manage the name space and support the basic set of operations. The facil-
ities required of each name server can be organized in layers as depicted in Figure 3.1. Subsequent
sections describe each of these layers in more detail as well as the interactions between layers.

Segments of programs to implement the name management mechanisms are provided in places in
order to make the architecture concrete and present guidelines for future implementors of distributed
name services. The programs are written to be easily understandable, not to be efficient or complete
implementations. The casual reader concerned with simply understanding the concepts presented
should be able to skip the program segments; though they often help to clarify the discussion.

All of the program examples are presented in the Mesa programming language [Mitchell et ai 79].
The intent is that the reader need not be familiar with Mesa in particular; familiarity with constructs
common in block-structured languages should suffice for understanding the examples. Explanations
of unconventional or esoteric language facilities are given in the footnotes.

3.1.2 Communication Support

The examples presented throughout this dissertation utilize a hypothetical remote procedure call
mechanism that allows procedures to be executed reliably on remote machines. Its use requires
adding a new NETADDRESS data type to the programming language, which is the internet address of
the host on which the called procedure is to be executed, and a new primitive, AT , which binds the
call to a particular address. For instance,

23

>M^M^^^i^^L^^k^\^\:wi ;^\Vv-s ijiiteJ- :<iL"w£iVf-.l\ ^:l<'^xyC'''^l<Z-^/-'/Z.''l':'' . ^kij»^^».-.

f^r/VV.TSV r WW9 ri Pk-Hk* ' <"«- «-«^ •" T iV-^i1
j* a - i ■ '.'■," • ' V'^'tTr»'. r^ •.".. ^

24

rvxmz sgrutce operations

name resolution

replicated data

communication dataPase

Figure 3.1: Functional layers in a name server.

address: NGTAOORESS;

result •— Module.Procedure[arg5J AT address;

invokes the given procedure of the given module at the specified host address and waits for the result
to be returned. This assumes an internetwork environment with a global address space from which
values of type NETADDRESS can be drawn.

The use of the AT operator is introduced to explicitly indicate the interactions between programs
running on separate machines. Such a facility does not actuailj exist in the Mesa programming
language. Nor would a real remote procedure call mechanism be incorporated into the language
in this manner since remote procedure calls are generally intended to look identical to local proce-
dure calls with the bindings between servers and clients being performed by the runtime package
[Birrell and Nelson 84j.

Remote procedure calls were selected so that the semantics of the communication can be presented
in an easily understandable way without being concerned with the details of a particular communi-
cation protocol or package. Furthermore, the details of packing operations, their parameters, and
their results into messages can be ignored.

3.1.3 Database Support

The name atrviet database, containing attributes for the universe of named objects, is distributed
and replicated among the name servers. A given attribute may be managed by one or more name
servers. However, for simplicity, all of the attributes belonging to a given object should be main-
tained together. That is, if a name server stores one attribute for a named object, then it stores all
attributes for that object. The uame servers that store information about a particular object, and
assume responsibility for reliably managing that information, are called the naming authorities or
authoritative name Servers for that object.

,' ' J. * .^ r> "rf* "_- " - " * " J. ' •-•.".."*- .~- »"' .'■■ .'■ 1,% %'« -V w".

fZFmam iupiw ^n

25

Database: DEFINITIONS IMPORTS NS = BEGIN

AttributeTuple: TYPE = RECORD[
name: NS.Name,
attribute: NS.AttributeType,
value: NS. Attribute Value

DatabaseObject: TYPE = LIST OF AttributeTuple;

Query: PROCEDURE[db: DatabaseObject, name: NS.Name, attribute:
NS.AttributeType] RETURNS (AttributeTuple];

AddTuple: PROCEDURE[db: DatabaseObject, tuple: AttributeTuple];

DeleteTuple: PROCEOURE[db: DatabaseObject, tuple: AttributeTuple];

ModlfyTuple: PROCEDURE[db: DatabaseObject, tuple: AttributeTuple];

TuplelD: TYPE ; -- opaque type

Enumerate: PROCEOURE[db: DatabaseObject, next: TuplelD]
RETURNS[tuple: AttributeTuple, next: TuplelD];

END.

Figure 3.2: Database interface.

3.1.3.1 Local database management

Each name server uses a database management system to store a set of attribute tuple», each
consisting of em object's fully qualified name along with an attribute type and value. Attribute
tuples are maintained by the database management system in special database objects. Figure 3.2
presents the interface for the Database module that provides facilities for storing and retrieving
attribute tuples1.

The Query operation retrieves the attribute tuple with a given name and type from the specified
database object. An attribute type of "ANY" may be given, indicating that any attribute for the
named object may be returned. AddTuple inserts the given tuple into the database object, while
DeleteTuple removes a tuple from the database object. Modify Tuple performs an atomic update to
a database attribute tuple; that is, it looks for a tuple whose name and type matches the parameter
tuple and replaces its value. Finally, Enumerate allows the contents of a database object to be
retrieved a tuple at a time; a parameter indicating the next tuple to return may be given as NIL to
start the enumeration.

Protection of database objects, that is, the right to change existing attributes or add new attributes
to an object, is enforced by the underlying database management system. The database interface

'This module makes explicit use of type declarations from the name server interface, NS, presented later in Figure 3.4.

The list of construct is actually an extension to Mesa present in the Cedar programming language.

■^VVAVJ-^-VV:-.-.-.- . - - -% _^ w » ^V LAJA U^k _% Jk i^a LA ^ Sm .% . • *-» JS

TV^

26

Replicated: DEFINITIONS IMPORTS NS, Database = BEGIN
OPEN Databam»;

StorageSites: TYPE = LIST OF NETADDRESS;

Query: PROCEOURE[sites: StorageSites, db: DatabaseObject,
name: NS.Name, attribute: NS.AttributeTypej
RETURNS[AttributeTuple];

AddTuple: PROCEDUREfsites: StorageSites, db: DatabaseObject,
tuple: AttributeTuplej;

DeieteTuple: PROCEDURE[sites: StorageSites, db: DatabaseObject,
tuple: AttributeTuplej;

ModifyT^le: PROCEDURE (sites: StorageSites, db: DatabaseObject,
tuple: AttributeTuplej;

Enumerate: PROCEDURE [sites: StorageSites, db: DatabaseObject,
next: TuplelD] RETURNS [tuple: AttributeTuple, next: TuplelD];

END.

Figure 3.3: Replicated data interface.

presented is oversimplified in that it does not show the parameters needed for protection, error
handling, and transaction management. Although these are important issues being tackled by the
database research community, they are not discussed in this dissertation.

Generally, a database management system resides on the same machine as each name server.
However, the database support could come from separate database machines accessed via the remote
procedure call protocol, as long as they support the Database interface.

3.1.3.3 Replicated data

An object with several authoritative name servers has its attributes replicated among those servers.
Name service operations thus require the participation of possibly several machines in order to read
or update replicated database tuples. Complete up-to-date copies of the object's attributes could be
stored by all authorities, necessitating a Read-any/Write-all algorithm for replicated data. Alter-
natively, a more elaborate scheme, such as weighted voting [Gifford 79!, could be used to maintain
consistent replicas.

Rather than attempting to choose a particular algorithm for maintaining consistency among repli-
cated database objects, this dissertation prejumes the existence of a Replicated module providing
the interface given in Figure 3.3. The operations allowed on replicated database objects are iden-
tical to those provided by single-site database managers. The replicated operations merely take an
additional parameter indicating the storage sites of all copies.

Using a Read-any/ Write-all scheme, the replicated query routine would simply be

urvvv v^*^ n v^ u^ T* wy *^ h9 w W^TT* ^^v^i^^^w^sT* ^^-».-^-»^fc'v* ^% -> ■ ^ -^ fc* -^ -^j* -!».- ^ ^« - »r.^^p^fji nJ".

' Query: PROCEDUREfsites: StorageSites, db: DatabaseObject,
name: NS.Name, attribute: NS.AttributeType]
RETURNS [AttributeTuple] = BEGIN

address- NETADDRESS — SelectSite[site9);
Database.Query[db, name, attribute] AT address;

END;

The choice of a particular server ^o direct the operation to, as embodied in SelectSite, should be
based on some criteria such as cost, closeness, or availability. Choosing randomly from the list of
storage sites has the nice property that no knowledge of other servers is required. Nevertheless, as
demonstrated in Chapter 5, substantial performance benefits can be obtained if the server is selected
intelligently. Thus, servers may wish to know what fellow servers are currently operational, how
expensive cross communication is, and how busy other servers are. A name server could acquire such
information by exchanging status information with other servers or by consulting local routing tables
to determine how close servers are to one another.

As another example of an instantiation of the replicated data module, consider a weighted voting
scheme. Using the CollectReadQuorum, CollectWriteQuorum, and SelectFaatestCurren-
tRepresentative routines from Dave Gifford's prototype implementation [Gifford 79], the operations
to retrieve and modify a database attribute tuple could be implemented as follows:

Quorum: TYPE = StorageSites;

Query: PROCEDURE(sites: StorageSites, db: DatabaseObject,
name: NS.Name, attribute: NS.AttributeTypej
RETURNS[AttributeTuplel = BEGIN

readq: Quorum <— CollectReadQuorum[sites];
best: NETADDRESS «— SelectFastestCurrentRepresentative[readq];
Database.Query[db, name, attribute] AT best;
END;

Modify Tuple: PROCEDURE[sites: StorageSites, db: DatabaseObject,
tuple: AttributeTuple] - BEGIN

writeq: Quorum <— CollectWriteQuorum[3ites];
WHILE writeq # NILDO

Database.ModifyTuple[db, tuple] AT writeq.first;
writeq «— writeq.rest;
ENDLOOP;

END;

Notice that the query routine is similar to that of the previous approach, except the selection of a site
from which to retrieve the desired data is confined to those sites belonging to the read quorum with
up-to-date copies; the database management system must maintain version numbers for the data so
that current representatives can be determined.

3.2 Structure-free Name Distribution

3.2.1 Assigning authority

For large computing environments, not all name servers can be authoritative for all objects; the
authority for objects must be divided among servers according to administrative concerns. The
various organizations sharing a common name space desire flexibility in configuring the distributed

27

^^A'wC>^vJ^<As^^^V^^•»jl■>J/^^^>l.^!>'^l^•^^^V;^^^■l>l^CJ•V-■.•--B^^.I^

28

n&me service, that is, choosing the authorities for an object. This dissertation proposes »tructure-frtt
name distnbution, which places no restrictions on the administrative control over parts of the name
space. In particular, thr owner of an object may choose its authoritative name servers, subject to
administrative constraints, independent of the object's name.

This differs from existing name services, which listribute names to authoritative servers based on
syntactic characteristics of the names, as described in Chapter 2. Syntactic distribution of the name
space generally fails to satisfy the desires for strong administrative control and graceful growth.
Recall that, with location-dependent and authority-dependent names, an object's authority is di-
rectly represented in its name so that changing the authority requires changing the object's name, a
prohibitively expensive operation.

Systems that use location-independent names assign authority based on zones; what zone an
object's name bebngs to, based on syntactic characteristics of the name, determines the object's au-
thorities. Structure-free name distribution can be considered a scheme in which each object belongs
to its own zone. This permits maximum flexibility in the administrative assignment (and reassign-
ment) of authority. It also simplifies name management since name servers need Dot agree on what
zones make up the name space.

3.2.2 Authority Attributes

In order to resolve names in a distributed environment, the name service must be able to determine
the authoritative name servers for every named object. This can be accomplished by maintaining
configuration data that contains lists of the authoritative name servers for every object. Such data
is stored in the name server database as attribute tuples of type "Authorities":

ServerName: TYPE « Name;

AuthorityList: TYPE = LIST OF ServerName;

-- AttnbuteType m "Authorities" --
AuthoritiesOata: TYPE = AuthorityList;

Essentially, an object's naming authorities are attributes of that object, though these attributes are
treated specially since they are used solely by the name service; authority attribute tuples are not
stored with the rest of an object's attributes.

Conceptually, authority attributes comprise the configuration database used for name resolution,

configurationDB: Database.DatabaaeObject;

Assuming all name servers store the complete set of configuration data, name resolution involves a
single database query.

Resolve: PROCEDURE[name] RETURNSfAuthorityList] = BEGIN
authorities: AuthoritiesOata;
tuple: Database.AttributeTuple:
tuple •— Database.Query[confipirationDB, name,"Authorities"];
authorities •— LOOPHOLE[tupIe.value, AuthoritiesDataj2;
END;

iil.^ i.*ji*.' •■\ ^ Mb Vh nVl ^ n ^i nVtA i *«\ S ^t k' i _"»j,'i.\.V .jtJ« '-*■''■ 'Wv'V't-ftJ .1A t 'l LVL V -'* ^'-'-'i-'-'-Ni - ••-l'-\A.Vs,'i_\.'j..' -^ . ,'i ., _iJ_»' > »V-VMS »V-'f .

rrrwy »vw^r.v, v ^■"' nw ^.in.^Mj^s^mw^'m-wvTM^Ti-^i-ni^.rw^^-'iw^wj^i-.'T^j tmwmwvwcwKverwrmrmj

However, for very large and diverse environments, the configuration database is undoubtedly too
cumbersome to be stored everywhere in its entirety. The next chapter introduces means to reduce
the amount of storage required in each name server for configuration data and the amount of update
activity required to add new name servers or named objects to the environment.

3.3 Distributed Operations

3.3.1 Basic steps

Performing a name seme« nperation on the attributes of an object involves first determining
and locating authoritative name servers for the named object, and then accessing the appropriate
attribute tuples. Specifically, these distributed operations consist of several steps:

1. Determine the authoritative name servers for the object;

2. Get the internet addresses of the authoritative servers;

3. Select the authorities necessary to perform the operation;

4. Perform the appropriate database operations at the machines on which the selected servers run;

5. Return the result, if any, to the calling client.

The first step, name resolution, uses the authority attributes stored in the configuration database.
The second step requires additional configuration data, as described in the next section. The seman-
tics of a ocular name server operation are embodied in the last three steps. The third and fourth
steps mb 'se of the replicated data facilities to query or update the name service database. Note
that the sek tion of authorities in step three depends strongly on the replication algorithm employed.
The last step simply returns the result of the operation as specified in the name service interface.

3.3.2 Locating name servers

Name servers, like all other objects, may exist anywhere in the network and, hence, must be
located before they can be accessed. The main attribute maintained about a name server is its
internet address,

-- AttributeType = "InttrnrtAddres»' --
InternetAddressData: TYPE = NETA,^ DRESS;

While name agents only need to discover the location of a single name server in order to utilize
the name service, name servers should be able to locate other servers without resorting to global
broadcast. Assume, for now, the number of servers is small enough that a database of server addresses
can be feasibly stored at all servers:

serverDB: Database.DatabaseObject;

This database is part of the overall configuration database.

With a local database of server addresses, the procedure to locate servers is a simple database
query:

'Mesa's I oophole construct provi«)»« a way nf «nhwrting if« stron«; typ»-che<!kmi; The first argument of the loophole

is taken to be of the type given by the second argument.

29

>kMäk&1i^1ii&^

•jr"ir» jr» v^T" ir»« ww-■--■".».■.■•

30

LocateScrven: PROCEDUREfservers: AutborityLiat]
RETURNS[Replicatcd.StorageSi£es) = BEGIN

address: NETAODRESS;
sites: Replicated.StorageSites •- NIL;
tuple: Database.AtthbuteTuple;
WHILE servers # NIL DO

tuple *- Databa8e.Query[serverDB, servers-first, "InternetAddresa"];
address — LOOPHOLE [tuple,value, NETADORESSJ;
sites ♦- CONS [address, sites]s;
servers «— servers.rest;
ENDLOOP:

RETURN[sites];
END;

The requirement that the name server address database be stored at ail servers in its entirety will be
relaxed in the next chapter.

3.3.3 Name service interface

Given the architecture for distributed name services developed in this chapter, all name servers
present a common intetfact and accept lookup requests for any nam: from any client. Since the
emphasis of this dissertation is not on designing a complete set of name service operations, two basic
interface procedures. Lookup and Update, will suffice as sample operations in this and later chap-
ters. Keep in mind, however, that a practical name service would likely desire a more sophisticated
interface for reasons of performance and/or protection as discussed in Section 1.2.4.

Figure 3.4 presents a Mesa definitions module for the name service operations, which includes the
type declarations for names and attributes. Assuming each name server has a single local database
object,

localDB: Database.DatabaseObject;

a prototype implementation module might include:

Lookup: PROCEDURE[name: Name, attribute: AttributeTypeJ
RETURNS[AttributeValue] = BEGIN

authorities: Authority List;
sites: Replicated.StorageSites;
tuple: Database.AttributeTuple;
authorities *- Resolve[name];
sites «— LocateServersfauthoritiesj;
tuple <— Replicated. Query [sites, locaiDB, name, attribute];
RETURN[tuple.valuej;
END;

Update: PROCEDURE[op: UpdateOps, name: Name, attribute: AttributeType,
value: AttributeValue] RETURNS]] = BEGIN

authorities: Authority List;
sites: Replicated.StorageSites;
authorities *— Resolvefnamej;

3The com constructor, in this procedure, adds an element to the beginning of a list. This facility is part of Cedar's

extensions to Mesa.

•-•-•->o-: j.--i-.-:^,-.>i--is:'; .■--j'-j''-^>ji'-jr'J,Vji"A '«Vk^s Jn -•»'.% k'vV.,-VjV.-sl.V-*^"«r..s fV JV'Lv..'t'!.'gVj

iwsTTw^%-irmwigT"* wvTVwjw^ärjwvT-JVJ «r. w.'w^,:

31

NS: DEFINITIONS = BEGIN

Name: T^.'PE = STRING;
AttributeType: TYPE = STRING;
Attribute Value; TYPE = STRING;

Lo. «up: PROCEDURE[name: Name, attribute: AttributeType]
RETURNS[AttributeValuel;

UpdateOps: TYPE = {add, delete, modify};

Update: PROCEDURE[op: UpdateOps, name: Name, attribute:
AttributeType, value: AttributeValue] RETURNSJ];

END.

Figure 3.4: Name Service interface.

sites «— LocateServers[autho-ities);
SELECT op FROM

add =>
Replicated.AddTuplelsites, localDB, [name,attribute,valuejj;

delete =>
Replicated.DeleteTuplefsites, localDB, [nJ>me,attribute,value)];

modify =>
Replicated.ModifyTuple[9ite8, localDB, [name,attribute,vrlue]];

ENDCASE;
END;

The five steps outlined previously axe represented in these Lookup and Update implementations.
Notice that ail external communication is encapsulated in the replicated data facilities.

A client's name agent might present a procedure call interface identical to that of the name
service, as in Figure 3.5. A simple name agent of this sort could merely use the hypothetical remote
procedure call mechanism to invoke name service operations:

mainServerAddrt^s: NETADDRESS;

Lookup: PROCEDUREJu'une: Name, attribute: AttributeType]
RETURNS[AttributeValu..| = BEGIN

value: AttributeValue;
value <— NS.Lookup[name, attribute] AT mainServerAddress;
RETURN [value];
END;

Update: PROCEDURi:[op; UpdateOps. name: ' ne, attribute:
AttributeType, value: AttributeValue] RETURN = BEGIN

". ". ". v ■, *.

wmimk wkflimwtw wfw.M-^* v«^rt"n vt»i ^ |':^^v^R".^».'Bim <.^ < ^'-^rrrr^^T^'y-T^r^nrn^r^'rrvy^ .^^^^^ t^rswmw •

32

NA: DEFINITIONS IMPORTS NS = BEGIN

Name: TYPE = NS.Namc;
Attribute Type: TYPE = NS.AttributeType;
AttributeValue: TYPE = NS.AttributeValue;

Lookup: PROCEDURE[najne: Name, attribute: AttributeTypej
RETURNS [AttributeValue];

UpdateOpa: TYPE = NS.UpdateOpa;

Update: PROCEDURE[op: UpdateOn». name: Name, attribute:
AttributeType, value: AttributeValue] RETURNS [];

END.

Figure 3.5: Name Agent interface.

NS.Update[op, name, attribute, value] AT mainServerAddresa;
END;

The address of the name server to send requests to must be obtained by means other than the name
service, such aa broadcast probes sent over a local network [B' ggs 83].

3.4 Summary

A distributed name service is provided by a collection of name servers that rely upon existing
facilities for communication and database management to manage a name space in a decentralized
fashion. This chapter present .1 aa architecture for a distributed name service that allows the author-
ity for parts of the name sp. .ce to be freely divided amongst the various organizations participating in
the diatributsd computing environment. The major difference between centralized and decentralized
name management is the need to resolve names when the name space is dispersed throughout the
environment.

A— iS. «'« jT. 1 _ rf'^V- B^n- ^ ■ ■^f'-

'.•^rvTTr^T^TTTr^;1»\ ■ y-M-y■ wmtr* f9eT»TawfmemrTwr*mr'

33

Chapter 4

Name Resolution

Structure-free name resolution, unlike existing naming mechanisms, locates the set of
authoritative servers for a named object without relying on the structure of the name
space. Names are clustered, not necessaiily syntactically, into contexts according to
space and performance considerations. Name resolution proceeds by a series of context
bindings until it encounters an authorities attribute for the named object. Structure-free
name resolution permits easy reconfiguration of the service since an object's name remains
independent from the location uf its attributes or the details of its resolution. The amount
of configuration data maintained by a name server can be easily reduced by leugthening
the resolution chain for object names. Different styles of resolution allow the mechanism
to be tailored to the division of computational power between servers and clients, as well
aa to the available communication paradigms.

4.1 Name Resolution Model

4.1.1 Distributing configuration data

Name reaolution denotes the process of determining the authoritative name servers for a named
object. In the name service architecture developed in this dissertation, the authorities for a named
object are stored as the value of an "Authorities" attribute tuple. The previous chapter presented a
simple model of name resolution in which the set of authorities attributes for every object, constituting
the configuration database, was maintained in its entirety at every name server. Thus, all names could
be resolved in a single step by any name server.

For environments with large numbers of "hjerts. the configuration database may likely be too large
to be stored everywhere. The knowledge of authorities for various named objects must be distributed
so that no server needs complete knowledge of the configuration. The primary difficulty in resolving
a name then lies in locating the authority attribute tuple for an object. Several interactions between
servers may be required as the name resolution activity migrates from one name server to a potentially
more knowledgeable server until the set of authoritative servers is determined.

4.1.2 Context objects

For the purpose of name resolution, contexts provide a means of partitioning the configuration
database so that it may be distributed among servers. Contexts represent indivisible units for stor-
age and replication of configuration database tuples. A context is thus materialized as an object
containing configuration data.

--% — ^1—fc "

34

ContextObject: TYPE = LIST OF ConfigTuple;

for now, assume that tuples holding configuration data are identical to other database tuples:

ConfigTuple: TYPE = Database.AttributeTuple;

This notion will be slightly modified in the next section.

Contexts have names just like any other object known to the name service,

ContextName: TYPE = N^me;

and may be maintained at any collection of name servers, listed in an "Authorities" configuration
tuple. However, contexts differ from other objects registered with the name service in that they are
actually managed by the name service and central to its functioning. Also, The choice of particular
names for contexts is not important since context names are only used internally within the name
service.

Since the configuration database, stored in context objects, contains no attributes for clients' ob-
jects, its distribution should be of no concern to clients of the name service. Thus, the decomposition
of the configuration database into context objects \nd the choice of authorities for those contexts
can be done to facilitate name resolution, rather than being governed by administrative desires. The
next section presents criteria for this decomposition.

4.1.3 Clustering conditions for configuration tuples

A eliuttring condition is an expression that allows the name space to be conveniently partitioned
into contexts. Specifically, a clustering condition applied to a name yields either a TRUE or FALSE
value:

ClusteringProc: TYPE = PROCEDURE[name: Name) RETURNS(BOOLEANJ;

Any procedure that exhibits this behavior might serve as a clustering condition. The particular value
returned, TRUE or FALSE , indicates whether or not the given name exists in the particular cluster.

Names can be clustered algorithmieally according to the value that results from applying a function
to them. In this case, the clustering condition is of the form "fjnamej = value". For instance, a hr h
function is a well-known technique for clustering names into buckets.

More typically, clustering is done lyntaetieally through pattern matching. Pattern» are templates
against which a name is compared. They range from names that may simply contain wildcards, which
are denoted by "*" and match any sequence of characters, to regular expressions. Names matching a
particular pattern, such as names with a common prefix "prefix.*", are considered part of the same
cluster. That is, the clustering condition, when applied to a name, returns TRUE if the name matches
the pattern.

Recent work on attribute-based naming conventions suggests a third type of clustering condition:
attribute clustering. In this case, names are grouped according to what attributes they possess. For
instance, an attribute-based name might consist of an unordered set of attribute type/value pairs of
the form "AttributeType = AttributeValue" [IFIP 84]. Each attribute of this form could serve as a
clustering condition; all names containing a particular attribute type with a particular value, such
as ''0rg8uiization=U.C.Berkeley", would belong to the same cluster.

Clustering conditions are used to assign names to contexts. That is, the authority attributes for
ail names belonging to a given ..luster are stored in a single context object. Section 3.2.2 portrayed a

' S." S."" -L* O •*■■'"-*■ ^ ■ * . *' .VJTJ.-^ „^LJ L* •_■ r. "j. » '„•,.? *-«•.■>.'•-•'• -.'•j'%jsj>yjL,y.''^L'j.'jy^j'A.' ^-V.v-'ifc if ."if- #.jifeif .viv.v

FV^ V~^ i *Wß '8

35

situation in which all names exist in a single context that is stored at all servers. Clustering conditions
may be applied to an existing context to further partition the context into smaller contexts.

Often, configuration attributes apply to a cluster of named objects. For instance, the names
belonging to a given context might all hav the same authoritative name servers. Thus, configuration
attribute tuples are redefined to contain clustering conditions instead of fully qualified names:

ConfigTuple: TYPE = RECORD[
cluster: ClusteringProc,
attribute: NS.AttributeType,
value: NS.AttributeValue

Configuration tuples resemble ordinary database tuples, except they can be considered attributes for
all names satisfying the clustering condition. Note that a configuration tuple for a specific named
object could contain a degenerate syntactic clustering condition that matches only the particular
name.

4.1.4 Context bindings and name resolution chains

Once the configuration database is partitioned into various contexts, the process of name reso-
lution is no longer a simple database query. When presented with a name to be resolved, a server
might first look in local contexts for an authority attribute for the named object; if the authority can
not be readily decermined, additional configuration data must exist locally that enables the server to
direct the resolution to another context, perhaps on a different server.

Context bindings, bindings between names that exist in a context and information that allows
name resolution to proceed, direct the name resolution activity based on clustering conditions. The
server trying to resolve a name applies a series of clustering conditions to the name until one of them
is satisfied. Associated with each clustering condition is the name of another context in which to
look for authority attributes of names in the cluster. This information is maintained in configuration
tuples of type "ContextBinding":

-- Attribute Type = ''ContextBinding" -
ContextBindingData: TYPE = RECORD[

newContext: ContextName

Contexts may contain configuration tuples of types "Authorities" and "ContextBinding".

Specifically, the algorithm for reviving names works as follows: Given a name to be resolved in
some context, the particular context is searched for either an authorities attribute "">r the named
object or a context binding containing a clustering condition that yields TRUE when applied to the
name; in the latter case, the name is then resolved in the new context specified by the context binding
attribute. Thus, resolving a name is a matter of successively binding names within contexts until
the authoritative name servers for the named object are discovered. That is, the name resolution
mechanism traverses a re«o/ut«on chain of "ContextBinding"' attribute tuples until it encounters an
"Authorities" attribute.

When a name is originally presented for resolution, an initial context must be chosen in which to
start the resolution chain:

initialContext: ContextObject;

„.'.■üÄiA^iJ »•-iVL-A^u \:.V^ ■L-A^

' j-,, rf-^ w\ **r *"j ■ v/ ■ - r'» ■ * ■ ". V'.'- J'- J- . ■ . >',— ." V

36

The initial context must contain authority attributes or context bindings for all n^mes in the name
space.

Global names result if and only if the initial context is a global one, that is, all name servers
share a common initial context. Relative names arise if the initial context used in name resolution
is not a global one, but is relative to the particular server presented with the resolution request or
to some other implicit context. The UUCP network for sending mail presents a good example of a
relative naming convention arising from interpreting recipient names relative to the sender's machine
[NowitiTS).

4.1.5 Applying the name resolution model

At this point, examples of how the mode] of name resolution presented above can be used to
describe existing naming conventions should help to clarify matters. The set of clustering ronditions
chosen by a given naming system partitions the name space such that each name exists in exactly one
cluster; each cluster is stored in a separate context object. Generally, existing naming conventions
can be characterized by the types of clustering used.

4.1.5.1 Syntactic clustering

Syntactic clustering allows names to be resolved in a manner similar to their structure, as is done
by virtually all current name management systems; simple pattern matching suffices as a clustering
technique. That is, suppose a routine exists that takes a name and a pattern as arguments and
returns an indication of whether the name matches the pattern:

Patxern: TYPE = STRING;

Matches: PROCEDURE[name: Name; pattern: Pattern] RETURNS[BOOLEAN];

Current approaches to name management rely solely on clustering procedures consisting of a single
pattern match:

PatternCP: ClusteringProc = BEGIN
RETURNfMatchesfname, "some-pattern"]];
END;

The particular approaches can be classified according to the name structure's effect on name resol'i-
tion:

Authority-dependent names: Names with the structure, "subname.server", explicitly indicate
the authorities over parts of the name space. Technically, such a scheme requires no configuration
data. Conceptually, a virtual context exists with an attribute for each server,

[Matches[name, "* .server"] ^Authorities", "server"] .

A name space of this sort is said to be physically partitioned since a name reveals the physical storage
site of information about its referent.

, v\ • ■■>y-1
«,i.- J .,,t...% _, ■ -. * . -s . -. ..** k\ >.'• ."* k'n ."- ,."• ,'■

Lv1 ^,I i • "t" .^ »•• V-k ",. ■,l-- ■.■■';. V- ,1- .■.'->. .'-'.,. l ._■- .■'.,. V V - , ^ i, i , . i ■. • ij ! -JlVil ■» I H. I ^. L11» ,". I S"

Organiiationally partitioned names: A name space that is organizationally partitioned, as uset
by Grapevine [Birreil st al. 82], allows flexible name management since the organizational authori^
for assigning names is explicitly recognized, but decoupled from the authoritative name servers for
those names. With such a naming scheme, the database partitions correspond to organizations rather
than nr Tie servers. With names of the form, "subname.org", the initial context contains a context
binding tuple for each organization,

[Matches[name, "* .org"], "ContextBinding", "org"]

while each organization maintains a context object containing authority attributes for all named
objects within that organization. An organization's name serves as a convenient name for its context.

In Grapevine, ail named objects within an organization have identical authorities, so each orga-
nization's context contains a single attribute,

[Matches[name,"".org"],"Authorities","serverx,... ^erverA-"]

A more general name distribution scheme requires an authorities attribute for each named object.
An organization's context object would be of the form:

org:
[Matches[name,"namei.org"],"Authorities","aerveru,... ,aerveriKn]

[Matches[name,"name^.org"],"Authorities","serverjvi,. •., server^rff"]

assuming the organization contained N named objects that had K authoritative servers each.

Hierarchical name»: Organizations can themselves be partitioned into smaller clusters, resulting
in hierarchical names consisting of more than two puts. The contexts at the lowest level of the
hierarchy contain the authority attribute tuples, while those at higher levels contain context bindings,
which indicate a delegation of authority for managing parts of the name space. The amount of
configuration data that must be stored in context objects at the various levels of the hierarchy is
proportional to the degree of branching of the name space tree. For this reason, hierarchical naming
conventions with several levels axe often well suited for naming large numbers of objects.

Consider the name space depicted structurally in Figure 4.1. The inherent structure in the name
space can be exploited by applying syntactic clustering conditions as indicated in Figure 4.2. In the
example, names are initially clustered according to their last character. Clusters that are too large to
be conveniently stored as a single context, perhaps the set of names ending in "A" in Figure 4.2, can
be further partitioned by applying additional clustering conditions. Figure 4.3 presents a complete
configuration database needed to resolve these names.

4.1.5.3 Variable syntactic clustering

Although existing name management mechanisms for hierarchical name spaces resolve names a
label at a time, as is done in Figure 4.2, syntactic clustering conditions are not restricted to matching
a single additional label in each step. That is, even using syntactic clustering, the length of the
resolution chain for various names need not correspond exactly to the number of labels in the names.
Name resolution can be tailored according to the desired response time for resolving names and the
size of contexts.

■^-■l'" t ■ l^

38

t2A ti2A ut2A

Figure 4.1: Sample hierarchical name space.

matches'"1 A" y VJA

matches "•2A

Figure 4.2: Syntactic clustering of a hierarchical name space.

LV.V>lvV^V-Vf\sV-\S\Si>lV^^ ■Jw*

-' i«* wj ^j" i^-" w. ^T. j HF-rw^ ^^ #~ ■ üpi - *r- ir m-.i

39

Initial:
[Matche8[name. "* A" J, "ContextBinding", "A"]
[Matchesiname,u* B"], "ContextBinding", "B" j
[Matche9[name,u* C" j, "ContextBinding", "C |

A:

1A:

2A:

B:

C:

[Matche9[name,u*lA"],"ContextBinding","lA"]
[Matche9[name,u*2A"],"ContextBinding",U2A"!

[Matcheslname/lA^/AuthoritiesV- • •"]

[Matche9[name,"i2A"],"Authorities","- • •"]
[Matches[jiame,uii2A"],"Authorities","- • •"]
[Matche9[name,"iii2A"],"Authorities","- - -"]

[Matches[name,ulB"],"Authorities","••-"]

[Matches[nanK ."IC"],"Authorities","- - ■"]
[Matche8[name,"2C"],"Authorities","- ■ •"]

Figure 4.3: Configuration database for syntactic clustering.

Once again, consider the name space in Figure 4.1. Suppose the initial context has enough storage
space to contain four context bindings instead of three. All names, including those with three labels,
can be resolved in a single step by matching multiple labels at time as demonstrated in Figure 4.4.
If the name space grows over time, then the intermediary context binding present in Figure 4.2 can
be easily reintroduced; no names need to change, only their clustering and distribution.

Syntactic clustering in which a variable number of labels can be matched allows potential per-
formance advantages to be obtained over traditional resolution schemes. Particularly, regions of the
name space that are abnormally sparse may be clustered together for purposes of name resolution.
Also, the name resolution chain for special names can be reduced by adding new clustering condi-
tions that match larger components of the names than a single label. Section 4.1.7 formalizes these
space/time tradeoffs.

4.1.5.3 Non-syntactic clustering

Algorithmic clustering allows names to be resolved independent of their structure. Clients of the
name service can choose names for their objects without requiring agreed-upon name structures; the
only requirement is that names be unambiguous. Hashing represents a familiar way of clustering
names algorithmically.

Suppose functions exist that map a name into a real number in the range (0..1J, such as.

Hash: PROCEDr^E[name: Name] RETURNS[REAL];

The name space of Figure 4.1 could be partitioned as in Figure 4.5. Notice that the partitions
do not correspond to the inherent structure of the name space. In fact, the name resolution tree is
binary while the name space has various branching factors if one looks at it syntactically.

A complete configuration database for these names is given in Figure 4.6. Pattern matching is
used for authority attributes since each object has its own set of authoritative name servers. Both the

.*» sAö/S J*« ■"■ ."v %-CO -'V-^r &£<t<itttt>^^^^

40

vi^'m^^itf^ if^ y^-L"*ji'* L*^" ^ ^ v* i *■ k * g^y K'W^1 ^ *v>»^fc^v^h^if^v*yi|iniw'jf^tf*|M^.jnrw^i,,M*jt*j,jf,^^ji^i;'

matches

Figure 4.4: Cluitering varying numbert of labels.

Figure 4.5: Clustering i name space through hashing.

/-y-. . • . >fl*. .'. V. a", i - ^- r- iT.. iT- <_ i . -"- « - . _ rf. t . . ^ ■ . »•_ .■_ J-^ rf'J ^^ .-_ tT- «'. ^J .l^ .5 ^v.i--i--^»v-:

" r ■ ?9p -j». -.« w&i r&m -,F •■ '1IPM^MWV*% H 1"WV V V tfV V VV^VIB "^ VWl^l Tl ^n T." * T1 ? -- ^fi^vtMi ^^ ^-^ "^"i ^.^ «en ^.':^rr ^-' ^- s.-x^ »^ «(^ T^Ti

41

Initial:

Cl:

C2:

C3:

C4:

C5:

C6:

[Haahl[name]< 0.5,4'ContextBmdmg''rCrl
[Hiishl[name]>=0.5;

uContextJ'indmgVC2',l

[Ha8h2(name]> 0.5,"ContextBinding",»C3"]
[Hash2(name] < = 0.5. "ContextBinding", "04"]

[Hash2[name) < = 0.5, "Context Binding", "C5"]
[Hash2[name)> 0.5,"ContextBinding","C6"j

[Matchesiname,"ii2A"],"Authorities","- • •"]

[Matche9[naiae,"lB"],"Authorities","- • •"]
[Matchesiname,"12A"],"Authorities","- - ■"]

[Matches[name,"iii2A"],"Authorities","- • ■*]
(Matches[name,"lC"l,"Authorities","- • •"]

[Matches[name,"2C"l,"Authorities","- • -"]
Matches name,"lA"],"Authorities","- - "I

Figure 4.6: Configuration database for algorithmic clustering.

configuration database in Figure 4 3 and the one in Figure 4.6 allow the set of names to be resolved,
but in drastically different ways. Even the name resolution chains for a given name vary in length
for the different clustering strategies.

4.1.5.4 Mixed clustering for growing systems

A mixture of syntactic and non-syntactic clustering can often prove useful for resolving names
in evolving systems. Current problems of scale in the Grapevine system serve as a good example.
Grapevine clusters names syntactically based on the registry name embedded in all object names.
Some of Grapevine's registries are becoming quite large. Suppose that a particular registry grows
too large to be feasibly managed as a single context; what can be done?

One course of action might be to add another layer to the name structure, yielding three-part
names as Tas done for the clearinghouse system. Unfortunately, this approach forces all objects
to changf their names, a costly operation for well-established systems. It also requires changes to
Grapevine's name resolution mechanism. Within the framework of the existing Grapevine system,
the only solution is to split the registry into two separat«- registries. Again, some or all members of
the registry must change their names.

A better approach might be to algorithmically partition large registries into smaller clusters.
The resolution chains for some object names would grow from one link to two; the first context
binding being done syntactically, while the second is done perhaps by a hash function as depicted
in Figure 4.7. Thus, changes to the Grapevine servers' resolution mechanism are required, but no
object names need to change.

* -"' •'*^''' *** •*■ >'* ■'»-- '»** •" J** -'• .* .'• ."■ .'• .^ *" -1*' •"-■ .^ - •

r ~«»i "Ti»vj* xj* ■JI »J* mr v^wr'^-j'^ -nr^^Tr'^T^w^^»r F^r^»^? LHJI ^| ^ ^ -^i^| ^J

42

Figure 4.7: Cluatcring large Grapevine registries algorithmically.

4.1.6 Extensions for other naming styles

In all of the name management schemes described thus far, the name to be resolved at any point
in the resolution chain did not change; only the context in which to resolve the name changed. Some
naming mechanisms involve changing the name being resolved as well as the context. Often, this
neu name is a function of the old name to be resolved, perhaps some partially qualified part of the
old name:

PartialName: TYPE = Name;
NewNameProc: TYPE = PROCEDURE[pname: PartialName]

RETURNS [PartialName];

To support these more elaborate styles of naming, context binding configuration attributes must be
extended to include the new name to be resolved in the new context:

ContextBindingData: TYPE = RECORDf
newContext: ContextName,
newName: NewNameProc

In all of the previously described conventions, the NewNameProc was simply the identity mapping.
However, it could also have been a name reduction mapping in which the new name is a strict tail
component of the old name. Such name reductions can either be used solely to reduce the amount
of storage required in context objects or to guarantee termination of the name resolution chain.

4.1.6.1 Naming networks

Hierarchical naming conventions are special cases of the more general naming networks in which
objects are identified by path names [Saltzer 78]. Naming networks can be easily built up from
the name resolution model presented because of the general relations allowed between contexts via

;.^vüi^r' >^-»> ^iZv^^Vlvl-il'

rygy^yg^y W?m*mS * k'JI W * jr*i *». ^^■iKaf»g'*t^a

H

Figure 4.8: Mutually encapsulated name spaces.

context bindings. In a naming network, names are resolved syntactically a label at a time as in
hierarchical name spaces, but cycles may exist in a name resolution chain. Because of these cycles,
name truncation is necessary to halt the resolution. That is, the new name to be resolved is derived
from the old name by stripping off a label; the name resolution process terminates when only a single
label remains.

Naming mechanisms in which the name left to be resolved at any point in the resolution process
is a tail component of the original name presented for resolution are defined herein as predestinate
naming conventions. Naming networks typify the class of predestinate naming conventions. Notice
that, for naming conventions of this sort, a name strictly decreases in length as the resolution proceeds,
thus ensuring that the resolution activity will eventually terminate. For example, consider the name
"A.B.C.D.E" complying with a hierarchical naming convention or naming network. The resolution
chain is as follows:

INITIAL(A.B.C.D.E)
— A(B.C.D.E)
— A.B(C.D.E)
— A.B.C(D.E)
— A.B.C.D(E)

The name resolution mechanism simply scans the name f; m left to right extracting a label at a time
and migrating to an authority for the new context obtained by concatenating the label just scanned
with the previous context name.

Naming networks that are not strictly hierarchical might naturally arise in practice when two
existing hierarchical name spaces wish to reference each other's objects by mutually encapsulating
their name spaces, as depicted in Figure 4.8. Clients of the first name space can reference objects in
the second by prepending their names with "B.OTHER.", whereas clients of the second name space
can reference objects in the first by prepending their names with "other.". Notice, however, that the
two name spaces retain their orixinai separate initial contexts, probably for backward compatibility.
In this example, the naming network resulting from the junction of the two original name spaces is
not only unrooted, but also has cycles.

43

■//vvv V-. 'J'-V-ViV-.V- «fJBB^.VJ A ÄV.V

.UVUKblLlURI

44

4.1.0.3 Beyond naming networks

Name resolution is not limited to predestinate naming conventions, such as naming networks, tor
which the resolution chain is predictable from the syntax of the name. In particular, within the name
resolution configuration dat» the new Name and newContext fields of a "ContextBinding" attribute
need bear no relationship to the containing context's name or the current name being resolved, or
the relationship may not be as simple as stripping off a single label of the name.

As a simple example of non-predeatinate name resolution, consider the convention for naming
Arpanet mail recipients currently used within the U. C. Berkeley Computer Science Division. Mail
clients are named according to the convention "userQBerkeley", though, internally, users are par-
titioned according to what computer they use. The name "frank" might exist in the context of
machine uemie", while "joe" exists on machine "kirn"; though their official mail addresses are
"frankOBerkeley" and "joeQBerkeley", respectively. Thus, the "Berkeley" context might contain
two context bindings for these users as follows:

Berkeley:
[Matchesfname, "frank"], "Context Binding", "Berkeley.emie(frank)"]
[Matches[name,"joe"l,"ContextBinding","BeTkele:*.kim(joe)"|

In these cases, the context bindings discard no components of the name to be resolved; only the
context itself becomes more refined.

Subatiasei, aliases for particular components of a name, fit nicely into the context binding model.
For instance, if "Berkeley" is a subalias for "uebvax", the two names can be made interchangeable by a
NewNameProc that takes a name of the form "front .Berkeley, back" and returns "front.uebvax.back".

In general, mapping contexts that change a name to be resolved in a wide context to a new
name in some smaller context are useful for converting between standard global names and naming
conventions particular to the internals of an organization. The inevitable evolution of distributed
computing environments often makes name conversions between old and new formats necessary. The
rewriting rules incorporated into the Sendmail internetwork mail router (Allman 83] were a response
to conversion requirements between various existing mail facilities. The pattern matching abilities in
context objects and the generality in context bindings allow them to accommodate such conversions
within the name resolution architecture.

4.1.7 Advantages of structure-free name resolution

The model of name resolution developed in this dissertation in which the process of resolving
names need not be strictly tied to the name structure, structure-free name reiiolv'ion, permits names
to be managed more flexibly than existing naming mechanisms. Specifically, it aliows tradeoffs to be
made in how names are managed without affecting the structure of the names or the resolvability of
the names. These space/time tradeoffs are demonstrated by the following two rules, which change
the content and distribution of the configuration database while preserving name resolution:

The partition rule: Let DB be a context and c be a ciustering condition applied to names in that
context; if all names in DB for which the clustering condition c applied to them yields true are
removed from DB and placed in a new context DBe, and one attribute tuple is added to DB:

[c[name], "ContextBinding" ."DB,:"]

then all names that couid be resolved in the old DB context can be resolved in the new one.

The indirection rule: Let DB be a context whose authorities are Ai.Aj i4n where n >= 2;
if name server Ai replaces its local context DB with a new context DBnew containing two
attribute tunies:

^:^>> .>>v-:.-^-'>>>>>:^

rw% yrg w^ji " ^j^i ^ P^ t'j i^if »y^» ^y" '' -^---j.^--T, ^ '.* 'j «y ■'iP^h' *- ^ *\. »w« inwut^i1^!^'

45

[Matche9[name,''*,],uContextBindingn,i'r>B',j
[Matche9[name,'4D.en],uAuthoritie9n

1
u

J4j,... Mn"]

tiien aii names that could be resolved in the DB context can be resolved in tiie DBnew context.

Theses two rules govern the modifications that can be made to reduce the overall amount of
configuration data without impairing name resolution. In particular, the partition rule provides a
way of splitting up a large context into smaller, more manageable, pieces; the indirection rule allows a
name server to offload the responsibility for maintaining a context to other servers, thereby reducing
its local storage requirements. Note that both rules add another binding to the resolution chain for
certain ,'ur;s, thus increasing the time to resolve a name. On the other hand, the indirection rule
reduces the total amount of storage required in the name service, assuming contexts are larger than
a couple of attribute tuples.

Starting with a single context otored at all name servers that contains the complete set of "Au-
thorities" attributes for all named objett», these two rules can be repeatedly applied to partition and
distribute the configuration data while ensuring ihat aii names can be resolved. The rules are not
meant to represent operations that can be performed on a running system. Rather, they suggest the
range of option --vailable to administrators when configuring or reconfiguring a name service.

Importantly he cost of name resolution varies with the amount of storage dedicated to configu-
ration data. At one extreme, if all servers have enough storage to hold the complete set of authority
attributes for all named objects, then any name can be resolved in a single step. On the other hand,
if authority attributes are distributed among servers, then context bindings are needed and name
resolution becomes more costly. Chapter 5 quantifies how the cost of resolution varies with the length
of the resc'ution chain.

Different name servers may observe different costs for name resolution depending on how much
configuration data they store locally. One small name server with very little storage need not increase
the name resolution chains for the complete service; only the particular server's clients are affected. If
certain name servers are upgraded with additional storage, gains in name resolution can be achieved
for some names.

4.2 Namfc Resolution Mechanism

4.2..1. Configuration database queries

The name service configuration database consists of a collection of conttxts that are stored and
rephcated on vi rious name servers. Looking up a name in a context involves applying a configuration
attribute's clust »ring condition to the name until one that returns TRUE is discovered. This is
performed by tie Query operation of the Cluster module1:

-- record format for storing ConfigTuples in Attribute Tuples
CTupU. TYPE = RECORD[

unust NS.Name,
attribute: NS.AttributeType,
cluster: ClusteringProc,
value: NS.AttributeValue

'For simplicity, all exceptional condition handlini? is left out of the prototype implementation. Particularly, this

, dure assumes that, for any name, some clustering conditioning in the context yields tr ue . This can be easily

ensured by ending every context with a clustuing condition that always returns tr ue .

. A- . 'i-. •-:.»-.. i " '» * - ^ - "- ^ ■ . ■ . -i .■■■.■.. f> ■» ^ i . mJtim* V - ^ - ^L. .t - ^

46

Query: PROCEDUREfcname: ContextName, name: Name]
RETURNS [ConfigTuple] = BEGIN

tuple: Databaae.AttributeTuple;
next: Database.TuplelD •- NIL;
dbContext: Database.OatabaseObject;
configData: ConfigTuple;
cb: CTuple;
dbContext «- ContextNameToObject[cnanie];
DO

[tuple, next] *- Databaae.Enuinerate[dbContext, next];
cb «- LOOPHOLE[tuple, CTuplej;
IP cb.cluster[name] = TRUE THEN EXIT;
ENDLOOP;

configData ♦— [cb.clu9ter,cb.attribute,cb.value];
RETURN [configData];
END;

This routine uses the ordinary database facilities to store configuration data tuples. Names of locally
stored contexts are mapped to the appropriate database object by the ContextNameToObject
routine.

The routine for querying configuration attributes makes use of the single-site database facilities
rather than the replicated data facilities. Since configuration data changes infrequently and name
resolution should proceed as quickly as possible, fancy techniques for replicated context objects are
unwarranted. The name resolution algorithm that calls upon the Cluster module assumes that all
copies of a context are up-to-date and chooses one to suit its needs. This allows different styles of
resolution to be accommodated as demonstrated in Section 4.2.3.

4.2.2 Locating context objects

Since names are always resolved with some context, a major problem in resolving names is deter-
mining the authoritative servers for the particular context. Contexts are themselves objects that may
be distributed and replicated in any number of name servers. Thus, as with other types of objects,
locating a context involves resolving its name,

FindContext: PROCEDURE[cname: ContextName]
RETURNS [AuthoritiesData] = BEGIN

RETURN[Resolve["initialContext", cnamej];
END;

However, the attempt to locate the context was triggered by the proceed of resolving a name in the
first place. Thus, if the FindContext routine calls Resolve, infinite recursion results unless some
special cases are utilized for locating certain contexts. That is, some special way of locating contexts
must be provided as the base case of the recursive name resolution.

One approach is to have a special "context" context containing the authoritative name servers for
all other named contexts, also referred to as a metaeontext. Locating a context, then, would simply
involve binding that context's name in the special metaeontext. The problem then becomes locatiiit;
the metaeontext. Fortunately, the metaeontext is small compared to the complete name serve.*
database since it contains only information about contexts. Moreover, it changes very infrequently.
Thus, in many eases, the metaeontext can be stored ac all name server sites, making it readily
available for resolving context names:

■.% !,Ti'/»i«i.■»i" ^'. HV" 'i ' '■ "V»l[,»X,,J,'iF».n* »ji ?j 'T'Jf">"".*"-.«'".* rj -.«rvrwvr. ri" r^ ■ wwawy'Bf! t

47

' myself: ServerName; -- name of local $erver

FindContext: PROCEDURE[cnaxae: ContextName]
RETURNS[AuthoritiesData] = BEGIN

IF cname = "metaContexf THEN
RETURN [myself]

ELSE
RETURN^esolve^metaContext'', cname]];

END;

For very large name spaces with many contexts, however, even the met&context may consume more
storage than some name servers can afford. In this case, such servers need only store references
to the servers that actually store the metacontext and not the context itself by making use of the
indirection rule. A remote metacontext contains the actual "Authorities'' attributes for all contexts,
while the local metacontext needs only two tuples:

metaContext:
[Matches[name," *"], "Context Binding", "remoteMetaContext"]
[Matches[name,"remoteMetaContextr"],"Authorities'',"- ■ ■v]

Context names can be easily resolved by calling on an authoritative server for the remote metacontext.
The servers for the metacontext can be viewed as providing a special name service for context objects.

For widely distributed name spaces, a better approach to requiring the existence of a metacontext
is to distribute the context configuration database just like the configuration data for other objects is
decentralized. In order to guarantee that a name server can resolve any context name presented to it
without contacting other servers, a context that contains context bindings to other contexts should
also include the authority attributes for those contexts. With this coupling of context bindings and
authority data, a new context name can always be readily resolved in the current context:

FindContext: PROCEDURE[oldContext: ContextName. newCname:
ContextName] RETURNSfAuthoritiesData] = BEGIN

RETURN[Resolve[oldContext,newCname]];
END;

Context names appearing in a context binding, rather than being globally unambiguous, are thus
relative to the context in which the context binding occurs. Without a single metacontext, no context
must grow with the size of the complete name space. Each name server need only maintain knowledge
of a localized portion of the name space.

4.2.3 Styles of name resolution

4.2.3.1 Recursive

While the policy for resolving names according to a particular naming convention is embodied in
the contents of context objects, the mechai.ics of name resolution is independent of the given adopted
naming convention. One algorithm for resolving a name relative to a context is eis follows:

Resolve: PROCEDURE[context: ContextName. name: Name
RETURNS[AuthoritiesData] = BEGIN

-- local variables

ji\^.:^r^.

{m ^'«i" "^ Vtp'H.^.i^^ W V«." H^K.' ^"JL"r^,.t"lL,',."''C

48

authorities, contextAuthohtiea: AuthoritiesData;
contextServer: ServerName;
contextAddresa: Internet.Address;
binding: ContextBindingData;
tuple: ConfigTuple;
• • lookup name in context
tuple «— Cluflter.Query[context, name];
SELECT tuple.attribute FROM

"Authorities" =>
authorities <— LOOPHOLE[tuple.value, AuthoritiesData];

"ContextBinding" => BEGIN
binding *— LOOPHOLE[tuple.value, ContextBindingData];
context Authorities <— FindContext [context, binding.newCop text];
contextServer «— SelectServer[contextAuthorities];
IF contextServer = myself THEN

authorities <— Resolve[bindlng.newContext,
binding.newName[name]]

ELSE BEGIN
contextAddresa «— LocateServerfcontextServer];
authorities *- Resoive[binding.newContext,

binding.newName[naine|]
AT contextAddresa;

END;
END;

ENDCASE ;
RETURNfauthorities];
END;

This algorithm is a recursive one in that names are recursively resolved in new contexts until an
authoritative name server is determined. The name resolution activity migrates to servers containing
the necessary contexts through remote procedure calls.

In the resolution algorithm presented above, the responsibility for performing the name service
operation rests with the initial name server that received the operation request. This server returns
the appropriate response after the name has been resolved and the operation performed. Using such
a reeurrive style of name resolution, the name service appears to a name agent to be a centralized
service; name agents may be unaware of the existence of multiple servers. However, because of the
recursive nature of the name resolution mechanism, a disparity in work results: the name agent has
little work to do while name servers may be involved in processing several requests at the same time.
This disparity is particularly alarming when one realizes that an order of magnitude more name
agents exist than name servers.

4.3.3.3 Iterative

An alternative to resolving names recursively is to use iterative name resolution in which the name
agent retains control over the resolution activity. The algorithms are similar, except that servers do
not call each other directly in the iterative case. A name server does its best to resolve names using
only locally available configuration data and returns to the calling name agent when it can no longer
continue. The name agent then calls on a different name server to continue resolution of the name.

A name service operation can be in one of two stages when a server replies to the calling name
agent:

Unresolved. The name has been only partially resolved.

Resolved. The name has been completely resolved and the operation has been completed.

i!/^^\jr\/\.>^-..-/-^.'>'.i/.-'.v.V-v-. -^ - _ ■ ^---^-"- "-• -- //t/^/v. .^v-^.^.'■'.^.v.-•.r'.^^■•:..-\.'i>---j,^-.^^.-^^j-^-,;

p S*SR ,>^■v."-".■v'1.',>.'lJ^w.,^, v »." »„-f».- <

49

The state of the resolution process at any point in time can be represented by a context name and a
name to be resolved la that context:

ResohreState: TYPE = RECORD[
context: ContextName,
name: Name

Initially, the resolution state consists of the initial context and a complete name.

When a server can not further resolve a name, it returns the current state along with the internet
address of a server that the name agent should contact next, presumably an authority for the current
context in the resolution chain2. The iterative version of the Reaolve routine is thus as follows:

Resolvel: PROCEDURE[context: ContextName, name: Name]
RETURNS[ConfigTuple, NETADDRESS] = BEGIN

tuple: ConfigTuple;
address: NETADDRESS;
binding: ContextBindingData;
authorities: Authoritiesüata;
server; ServerName;
tuple <— Cltister.Query [context, name];
IF tuple.attribute = "ContextBinding" THEN

BEGIN
binding »— LOOPHOLE[tuple.value, ContextBindingData];
authorities «— FindContext[context, binding.newContext];
server <— SelectServer[authorities];
IF server = myself THEN

[tuple, address] •— ResolveI[binding.newContext,
binding.newName[name]]

ELSE
address «— LocateServer[3erver];

END;
RETURN[tuple, address];
END;

The name agent is responsible for presenting the current resolution state to a name server along with
an operation request so that the resolution activity can continue where it left off.

In order to allow iterative name resolution, all name service operations should take the current
resolution state as an additional parameter. These operations must also return an indication of the
stage of the operation.

Stage: TYPE = {Unresolved.Resolved};

along with enough information for processing to continue at another name server. If the name has not
been completely resolved, the operation returns the current state of the resolution and the address
of the next server to contact,

3 In some caaes, it would be better for the server to return the list of authorities rather than choosing one and returning

its address. A name agents that has knowledge about the existence and locations of servers would be able to select

a server based on its own criteria rather than Hie name server's. For instance, the closest authority to the server is

not necessarily the closest to the agent. Moreover, name agents could cache the authority information and use it to

intelligently direct future operations. Caching is discussed in more detail in Chapter 7.

^- ^ --*--5 r^'- \j.- -^5.^^" < 'rf "i f>,.- ^.r » r-i '.mt'mr.*' •. J-L J.^'- V ..« L'fc Jfc ..!»!.■ V

^'r5_rTi^?_"jr~"T"Tr'"3r--T-7—^—,v ,* -" ' W"J .".' ra VJ B"t >r. wjr».!''. r'. ' ■ ■ • S .,"v ,"» > '. ' . t !. ' ' '. " , " t " ,• " - .»

50

UnresoIvedData: TYPE = RECORD[
state: ResolveState,
next: NETADDRESS

If the operation has been completed, then the name agent receives the desired result of the operation,
as usual.

For instance, the name server lookup routine for iterative name resolution has a similar interface
to that for a recursive style of resolution, except it accepts the resolution state as a parameter and
returns the current operation stage:

Lookupl: PROCEDURE(name: Name, attribute: AttributeType,
state: ResolveState] RETURNS[AttributeValue, Stage] = BEGIN
-• iterative «ersion of the Name Server

tuple: Database.AttributeTuple;
ctuple: ConfigTuple;
address: NETADDRESS;
authorities: AuthoritiesData;
sites: Replicated.StorageSites;
binding: ContextBindingData;
continue: UnresoIvedData:
st: Stage;
value: AttributeValue;
[ctuple, address] «— ResolveI[ResolveState.context, ResoIveState.name];
SELECT ctuple.attribute FROM

"ContextBinding" => BEGIN
binding *- LOOPHOLE[ctuple.value, ContextBindingData];
continue-state.context «— binding.newContext;
continue.state.ncime ♦— binding.NewNameProc[name];
rontinue.next ♦— address;
value ♦- LOOPHOLE[continue,AttributeValue];
st «— Unresolved;
END;

"Authorities" => BEGIN
-- same <u for recursive name server
authorities <— LOOPHOLE[ctupIe.value. AuthoritiesData]];
sites ♦— LocateServers[authorities];
tuple •- Replicated Query[3ite3, localDB, name, attribute];
value •— tuple.value;
st «— Resolved;
END;

ENDCASE => ERROR;
RETURN[value,st];
END;

The value returned by this routine depends upon the stage of the operation, aa does the name agent's
action:

f

Lookup: PROCEDURE[name: Name, attribute: AttributeType]
RETURNS[AttributeValue] = BEGIN
-- iterative version of the Name Agent

value: AttributeValue:

f^ ^•„■■f-»'.. t\ ■<'../'» .t*.y. ■tiJ'J'tJ'fl

51

st- Stage;
continue: UnresohredData;
state: NS.ResolveState «- [name^initialContext"];
address: NETADDRESS«— mainServerAddress;
00

[value, st] <— NS.LookupI[name, attribute, state] AT address;
SELECT st FROM

Unresolved => BEGIN
continue *— LOOPHOLE[value, UnresolvedData];
state ♦— continue.state;
address «— continue.address;
END;

R'-solved => EXIT;
ENDCASE => ERROR;

ENDLOOP;
RETURN[value];
END;

Notice that the name agent's interface presented to its clients remains the same regardless of the
style of resolution employed.

4.3.3.3 Transitive

A third style of name resolution, trantitive name resolution, falls somewhere between recursive
and iterative resolution. With transitive name resolution, the name server currently processing an
operation simply passes the operation to a server that can continue its processing. As in the recursive
approach, name agents are not involved in the act of name resolution; and, like the iterative approach,
a name server gives up its responsibility for performing an operation when it can no longer resolve
the name locally.

The implementation of transitive name resolution is similar to the iterative style presented above,
except that the operation, along with its current state, is sent directly to the selected next server
instead of returned to the name agent; the authoritative name server that eventually performs the
desired operation returns the result. The only way that a name agent may be aware of the distributed
nature of the service is that the response to its request may be received from a different server than
the one it was sent to.

4.3.3.4 Comparisons

Figure 4.9 shows the communication patterns induced by the different styles of resolution. The
choice of a particular style of name resolution should be based on the relative processing powers of
name servers and name agents and on the semantics of the communication protocols employed.

The transitive approach to resolving names results in the fewest number of high-level messages,
though it is more susceptible to failures since servers do not receive feedback once an operation is
passed on. Thus, transitive resolution is best suited fur an environment in which reliable communira-
tion connections between name servers can be cheaply maintained. Recursive and iterative styles of
resolution, on the other hand, adapt nicely to a remote procedure call communication paradigm. An
iterative approach also works well if An unreliable datagram protocol with timeouts is utilized; the
periodic replies from servers makes it easy for the name agent to monitor and recover from failures.
Timeouts aie much harder to set with a recursive or transitive style because of the large variation in
the time necessary to resolve names.

As for computation, the iterative style of name resolution requires the name agent to do more work.
However, it also provides more opportunities for the name agent to play an intelligent role in name

• ^ ■■%/'''•/■•/■.■■.*/. •_« ."j rjs "JI j" /Li, .-. .'_ i .-.«\. . f- r. f. f* -f _ • . « . « - i

52

recurstue

tmnsitlue

iterative

Figure 4.9: Styles of name resolution.

\^vN-.N'.'AV'AV. kN\'>.\^iN\\\vi^-!..\vX'vi.v^ 'SJA.^'^ u^ivx ■ ^\vl-i L J A v-Lj J :.^;L<sjr^v:a.\ ^.v^vaA^x ^r^'' £J-1.-. Ü. ti L\- „». .

53

resolution; for instance, a name agent may choose to cache the results of recent name resolutions and
use this to direct future name lookups to the appropriate server. If an iterative approach is adopted,
small computers with dumb name agents could be accommodated by interjecting a name resolution
server between the agent and servers. Such a server would control the resolution activity so that the
simple name agent need not be involved.

AU three styles require approximately the same amount of computation from the name servers; the
only major difference is the lack of communication between servers in the iterative case. Recursive
resolution, however, would undoubtedly require the name server to be multiprogrammed since a
server can not afford to wait for a recursive resolution request to return before processing the next
request. Thus, the internal organization of a name server performing recursive name resolution is
much more complicated than that for the other styles.

4.3 Dynamics of Name Management

4.3.1 Updates

Large distributed computing environments are constantly changing and evolving. Name services
gain their utility by insulating users from the immediate effects of changes and allowing them to
discover these changes through late binding. For instance, if an object moves then the name service
should be informed of its new location; other objects that reference the moved object by name need
not be aware of its migratior. since they locate it indirectly through the name service.

When designing a name service, one must allow updates to the name service database but try to
isolate the effect of these updates, not only from name service clients, but also from as many servers
as possible within the name service. The many kinds of updates to the name service include adding,
removing, or changing:

• object attributes

• object names

• contexts

• authorities

• name servers

Changing the set of attributes for a given object, as previously discussed, requires first resolving the
name and then performing a replicated database operation. Only the authoritative name servers for
the object are involved. The other classes of updates are more difficult, and are discussed in detail
in the next two sections.

iTJi

4.3.2 Name registration

With the simple name service interface presented, registering or unregistering an object with
the name service is simply a matter of adding an attribute for the object or removing all of the
attribute tuples for the object, respectively. However, to guarantee that two different objects do not
inadvertently register under the same name, rendering the name ambiguous, it may be desirable to
provide additional name service routines:

Register: PROCEDURE [name: Namej RETURNS[];

UnRegister: PROCEDURE[name: Name] RETURNS(];

'tztn«^.
»■ * Ji »_* -- ■-« ■— "-• •J» r-. V. 'Jt -J. ■_-> J,>J -j »• j %M 'J, _' L J !JJU t*Lj. ^r.: "-t JB^-J -j -j-;^>>.-_.;

54

UnRegiiter is not strictly necessary since it simply deletes all of the attribute tuples associated
with the named object; Register, on the other hand, has very special semantics.

Name service clients are allowed to choose a name for their objects, but a name must be determined
to be unambiguous upon registration, that is, the name must not be already in use. The registration
activity attempts to resolve the name presented for registration until either the resolution mechanism
can no longer continue or an "Authorities" tuple for the name is encountered. In the latter case, the
registration request is rejected since the name is already in use. In the former case, the part of the
name that was to be resolved when the mechanism halted, the remainder, is added to the current
context with a list of authorities. For example, if one attempts to register the name "A.B.C and
"A.B" is an existing context that contains no attributes for "C", then the name's resolution will fail
when a "ContextBinding" or "Authorities" attribute for UC" is searched for in the context "A.B"
and not found. At that point, an authorities tuple for •'C" will be added to context ■'A.B".

U may be desirable to put some constraints on the types of names that are accepted for reg-
istration. The protection on context objects enforced by the database system can serve to restrict
the registration of undesirable names in many cases. In addition, constraints may be placed on the
structure of a name's remainder. Typically, the remainder should be a simple label of the name, and
not a structured component. For instance, if the name in the previous example were "A.B.CO" then
adding an authority tuple for "CD" may be undesirable; perhaps the name should be only accepted
if a context for "C already exists.

Several options exist for choosing the set of authoritative name servers for newly registered objects.
A parameter could be added to the Register routine to allow clients to explicitly specify a desired
set of authorities. However, clients probably are not interested in such levels of detail, while system
administrators are interested in keeping balanced loads on the various servers. A set of default
servers could be assigned as a simple scheme. A better method would be to search for an arbitrary
"Authorities" tuple in the current context and assign the same authorities to the new object. In this
way, objects within the same context would tend to have identical authorities, often the authorities
for the context itself.

After registration, the named object has been assigned authoritative name servers, though it
has no other attributes. Only the authoritative servers for the updated context are affected by the
registration. The time required for the new object to be observed by the complete name space depends
on the algorithms employed for updating replicated database objects and the degree of consistency
provided.

Registering a new context requires adding an "Authorities" attribute for it to the name service
configuration database. Also, in order for the context to be useable, one or more "ContextBinding"
attributes must re.er to it. Initially, the context will be empty, though, once it is registered, object
names may be inserted into it. Facilities for deleting a context are straight-forward provided that all
names belonging to the context have been previously deleted.

4.3.3 Name service reconfiguration

As the distributed computing community grows over time, it will occasionally be necessary to
reconfigure the name service to balance the demands placed upon it or to add new servers to offload
existing servers that have become overloaded. Since the assignment of object names is independent
of the assignment of responsibility for maintaining information about the objects, the name service
can be easily reconfigured. That is, new name servers can be added to the environment and assume
authority over part of the existing name space; application programs which rely on the name service
are unaffected since the object names do not reflect the name server configuration.

Changing the authorities for a named object is more than just changing the "Authorities" attribute
for that object. New authorities must acquire the complete set of attribute tuples for the object by
establishing a connection to an authoritative server and retrieving the attributes. Problems may
result if the "Authorities" tuple is updated before the transfer actually takes place unless the servers

^:v:v^ir>£^^v^^^

55

are prepared to try a different authority if the first does not have the desired data. To be safe, Ihe set
of authorities should be updated first in the case of a delete; the server that is no longer authoritative
can then delete the object's attributes at its leisure. When adding new authorities, the authorities
list should be updated after the attributes have been transferred.

Lastly, putting a new name server into service requires introducing the new server to all existirg
servers in the worst case, a potentially expensive operation. As an optimization, the new server's
internet addiess need only be known by servers that contain context objects which reference contexts
or objects over which the new server has authority. For a strictly hierarchical name space, this means
that only servers who have direct authority over the new server need be informed of its existence.
Thus, the update activity can once again be limited to a small area for well defined name spaces.

4.4 Summary

Name server configuration data enables the name resolution activity to migrate around the en-
vironment from server to server until a name is completely resolved. The configuration database,
consisting of authority data and context bindings, is itself distributed and replicated so that the size
of the overall name space does not place undue requirements on any single name server. The process
of resolving names is inherently independent of the structure of n^mes, although the name service
administrator, when configuring the name space, may choose to exploit the structure of names to
reduce the size of the configuration database.

Specifically, the following concepts play an important role in structure-free name resolution:

Authority attributes enable an object's attributes to be located.

Context object» allow the set of authority attributes to be partitioned and distributed.

Cluttering conditions serve as criteria for assigning authority attributes to context objects.

Context bindings allow names to be resolved.

The policy for resolving names, as represented in the configuration database, is separated from the
mechanism for resolving names. Three styles of name resolution, recursive, iterative, and transitive,
place different computation and communication requirements on the name servers and name agents.

The mechanisms supporting this new approach to name management are more complicated, and
hence more expensive, than existing schemes for resolving names based solely on their structure.
However, the added flexibility allows name spaces for large computing environments to evolve over
time. Since the configuration data is stored as attributes of objects, just like any other name server
data, the name service can be easily configured and reconfigured. Space/time tradeoffs exist in
which the amount of storage dedicated to configuration data can be reduced if the resolution chain is
lengthened for some names. On the other hand, the name resolution chains can be reduced compared
to existing name resolution schemes by dedicating more storage to configuration data.

"-'-" V-'-^-^-^'-V-V-V-'V-v^-Vv:.-;.'^-^:/ .v^rv'Cu^^^-^jö^l-^^

iifsprs'&nrjirj ww*M *?ar^ "m ^nramj »^B »TI »VKXFTST^H R7 ^T^IT^r -/T ^^^r\fW'^"ilf
,-T\fT» V^ir-" v^ «r'' T—;T^T--W-T-T- K^p'f^ "^»^K'f^lljn^ iT^if ^l"'VJif'* fe^^/T f

56

Chapter 5

Performance Analysis

An analytical model for distributed name services allows one to investigate the effect of
various design and configuration choices on the cost of name service operations. Although
a name service plays a vital role in internetwork environments, few attempts have been
previously made in the computing literature to quantify the performance of distributed
name resolution. New results show that the cost of name service operations with a
decentralized service need not be appreciably greater than with a centralized service
(though more storage space is required for configuration data). Applying the simple
performance model to a sample environment indicates that substantial cost benefits can be
accrued through replication of name service data; however, the benefits depend heavily on
the topology of the environment. For a moderate degree of replication, the unavailability
of a few name servers does not significantly increase the coats of uame service operations,
ignoring increased server congestion.

5.1 Name Service Performance

The cost of communication between clients and name servers is the major bottleneck in locating
remote resources in environments consisting of a «ubstantial number of interconnected networks with
a large number of hosts. In such an environment, the performance of name server operations is
dominated by the number of name servers that must be accessed and the cost of accessing those
name servers. The name service, that is, the group of name servers that collectively manage the
name space, should be configured so as to minimize the cost of name service operations for the
average client.

Once a naming convention has been adopted, the many factors affecting the efficiency with which
the name space can be managed and the coat of performing operations on name server information
include:

• the performance of each individual name server,

• the placement of name servers throughout the internet,

• the amount of replication of name server information,

• the choice of authoritative name servers for parts of the name space,

• the number of name servers that are currently operational.

• the clients' patterns of reference to name server information.

These factors, with the exf eption of the last one, characterize the current configuration of the name
service. This chapter look: at each of these issues in detail.

»: Jf.;_?-J . -» r-ftrj-.'-a. .» /'_w»_ j_.- ^^V,»^

•--»- V t-

The next section preseitts a simple model of distributed name services that enables the cost of a
narne server operation to be quantified for a variety of name server configurations and name resolution
policies. The model does not attempt to give detailed performance predictions, such as those that
might be obtained through simulations, but rather concentrates on analytical formulations of the
high-level interactions required between name servers to complete an operation. The goal is to be
able to compare the coat of operations for different choices that must be made by administrators
when configuring a name service.

In practice, the cost formulas derived for name server operations can be applied to existing
environments to analyze and subsequently improve the performance of the system, or they can aid
in making design decisions when configuring a new system. For instance, a network administrator
may wish to assess the benefits of increased replication or the addition of a new name server.

5.2 A Model for Name Server Interaction

5.2.1 Name servers and clients

A name service consists of N servers, ./V5i... NSs, distributed throughout an internet. At any
point in time, some fraction of these servers will be accessible; the others may have crashed or become
detached from the network. Sp represents the current set of name servers whose data is inaccessible
because of some failure; Sp C {NSi,..., NSN} has cardinality F.

The various name server clients are enumerated I...U. The term "client" may refer to a specific
program, host, network, or some combination thereof. In general, clients are distinguished by their
location in the internet relative to the name servers and by the particular objects they reference.

A name service client need only know the location of a single name server, presumably the
closest one, to make use of the name service. Name service operations are assumed to be performed
iteratively: if the primary name server, iV5ma,n, is unable to resolve a name, then it returns the
location of a more knowledgeable colleague. Several iterations may be necessary to perform an
operation for some naming conventions and management strategies.

5.2.2 The network

The round trip transmission cost between client u and name server «' is given by cu,'. Observe that
cUi strongly depends on the sites at which the client and server are executing. It varies according to
the number of gateways traversed and t^e speeds of the intermediate transmission lines. The number
of bytes transferred is assumed to have a negligible influence on the communication cost since name
server queries and responses are generally quite small.

This is a very simple static measure of the cost of communication between clients and servers. In
particular, variations due to network congestion are ignored. While such a model may be reasonable
for widely distributed environments with slow speed lines and many gateways, it certainly would
not suffice for local area networks. The model does not include the cost of communication between
servers since an iterative style of name resolution is assumed.

5.2.3 The database

The name service database is strictly partitioned into h database objects. In the degenerate case,
each database entry is a separate object. The database object, (ifc, ... (ifcK, correspond to indivisible
units of storage. That is, either the complete database object is stored at a given name server or
none of it is.

Each name server has authority over some subset of the database partitions. Typically, no single

57

LV v^.vj.-.v.v.'i-.r, mJ*, mA. aJi 4_'_ nJ". *_*.

58

.^■"».^■^V ."».V.

• I
>'
v

name server stores the complete database. The set S* contains those name servers that store object N
dbn; 5k. for it = 1... A-, is a subset of {iVSi,..., NSy}. In other words, S* is the list of authoritative IJ
name servers for dbk • I

For each name server, di denotes the coet of executing a database operation at NSi- For simplicity,
this cost, which could depend on such things as the overall size of the database maintained by Ar5,
and the kind of database facilities employed, is assumed to be fixed over time. In particular it does
not account for variations in the load at the server. Moreover, no distinction is made between different |N

N

types of database operations.

5.2.4 Reference patterns

*

Each client has a set of objects (or resources) that it regularly references. Different clients generally
perform different name service operations on sets of objects with varying frequencies. Client u's
reference mix is represented by rul.. .ru^. Th^t is, rut is the percentage of name server accesses .
performed by client u to the database partition 16*. Note that the rttfc'i characterize a client'u logical " I
aeeesi patterns.

Physical access pattern», the fraction of accesses to individual name servers by each client, are
dependent on both the frequency of accesses to the name service database entries (rut for fc = 1... A')
and the mapping of data to storage sites (5* for fc = I... K). The locality of reference is the degree to
which local name servers are accessed more frequently than distant servers. Locality in the physical ^ Ü
access patterns is desirable since local servers can be accessed more cheaply than distant name servers.
The amount of locality achievable in practice depends on the distribution of clients that are interested
in a particular name server entry. +

•I 5.2.5 Operation costs

For a given name server, NSi. Cui specifies the cost of accessing that name server remotely irom
client u. This cost includes both the communication and processing costs. Hence, Cut is the sum of
di and cUi.

For a particular operation o € {lookup,update}, Lout represents the total cost of performing
operation o by client u on information in database object dbk ■ For a centralized name service with ^ M
a single server. iVSm,,«, Lout would be simply Cumoin- However, for a distributed service, Lout
includes the cost of locating the desired data; this name resolution cost may involve retrieving con-
figuration data from one or more name servers. Lovk is often denoted as simply £„* in cases where
the particular operation is clear from context or where Lfootup u* = ^update ufc-

The complete cost of operating on name server information, such as performing a name lookup,
varies per client according to the client's location relative to the various name servers and the client's # M
reference mix. The expected value of this cost for client u, denoted by E(LU), is weighted according
to tt client's reference mix:

K l-
£(£u) = X>ut£(£uA). (5.1) f:

k = l

Deriving an optimal configuration would involve minimizing the sum of the expected costs for ail # I
clients.

5.2.6 Summary ,<

T\AC section advanced a model for ■Ustributed name services. The parameters of the model. _ i
which characterize the name service's configuration, are summarized in Figure 5.1. When applying
this model to study a proposed name service configuration, system administrators have control over

1 y up| ^ V p R1l| »■—,—-TL-ii"."^ y^-y' r» S-» B^ V BTI m ^'Tll

iVSi... iV5 v = set of name servers

I.. .U — name server clients

dbi... db/f = name server database objects

5* = set of authoritative name servers for dbk

fuk = fraction of client u's accesses to dbk

cUi = cost of communicating with NSi from client u

di = cost of performing an operation at NSl

SF — set of failed name servers

Figure 5.1: Name service mode, parameters.

N, dbk, and Sk- Tha parameters, d,, rui, and cUi, to a large extent, should be measured or projected.
The communication costs, cu<, however, also depends upon the placement of servers, which can be
controlled.

Clients and system designers are primarily interested in the expected name service operation
cost E(LU), which is a function of these parameters. Studying t'.e effects of varii us configuration
choices can be accomplished by varying a parameter, while holding tue uibers constant, and observing
changes in the expected cost. Typically, the cost values for the parameters are specified in units of
time so that Lu gives an expected level of performance. Alternative measures of cost, such as dollars,
could also be used.

5.3 Performance of Individual Serve» J

The model is not concerned with being able tc- predict the performance of a particular name
server since standard performance evaluation and improvement techniques can be applied to ana-
lyze and enhance an individual server's level of performance. Also, additional name servers can be
employed if existing ones become overloaded. Instead, the performance of various servers is used
indirertly to gauge the distributed performance of the overall service. In the model, NSi'a perfor-
mance is completely embodied in the database operation cost, d,, and the processing component of
the communication costs between clients and the server, cui.

5.4 Name Server Placement

Generally, the placement of name servers in the distributed environment is dictated by admin-
istrative considerations, rather than by performance. An organization provides the name servers
required to manage the objects created and owned by members of that organization, or else arranges
to lease time and storage from another organization's server. The location of servers has an indirect
influence on performance through the database objects that are assigned to particular name servers
and the cost of communicating with these servers. This influence may be substantial for very large
distributed communities.

As an exami • of a widely distributed environment, consider the network topology of the
Grapevine syste... vas of summer 1983 [Schroeder et al. 84j) presented in Figure 5.2. The circles
represent Ethernet local area networks, while the lines are long distance links with data rates of

59

.1«-'. «J *-" ■>!_-. «.-.d.- ^.•1 mt. «. 1 '. ^1*1 -__a__i --3-_^ —s_ lJ-.A^g_,.i« <— 4 . t.j .- - « - ■.. m~t , .IL .-- ..'-^■- i - - -^ WSJ-»,.-;.»,

p.-up iy u^ii.ii.,iVl.,.^^ j,^<T>;W! }•< r. r.y.-f.'^i^.1 -»■?•'■ gfyw ^.''■,-» , ■ ji'jt'j'P'^fM-.-■ ■ J'i
|»lf*v-'. tf-Mi,- wy^pf^y^^g^^^ ■,-■*' 1-^« 1^1 ^«jyi^^i^l_^l ^1

60

Interconnections:

^M ethemet interface

_ ethernet

... 56Kline

 9.6K!ine

Figure 5.2: A sample internet.

This is the configuration of GrapeTme serrers in ereryday use at the Xerox Palo Alto Research Center as of
summer 1983.

TT S W^ ■ '.,T,,TF STB^ l£ VU« Ul^. HL. WSS* l-^T-W'-e1 "W^

61

from tc server
network A B C D E F G H I 1

1 1 1 1 56 56 HI 111 166 1661
2 56 56 56 1 1 56 56 111 111
3 1 HI 111 111 56 56 1 1 56 56
4 166 166 166 HI 111 56 56 1 1 j
5 479 479 479 424 424 369 369 314 314
6 1 682 682 682 627 627 682 682 737 737 |

7 682 682 682 627 627 682 682 737 737
8 682 682 682 627 627 682 682 737 737
9 369 369 369 314 314 369 369 424 424
10 682 632 682 627 627 682 682 737 737
11 682 682 682 627 627 682 632 737 737
12 424 424 424 369 369 314 314 369 369 J

from to server
network J K L M N 0 P Q

1 166 479 682 682 369 682 682 424
2 111 424 627 627 314 62/ 627 369
3 56 369 682 682 369 682 682 314
4 1 314 737 737 424 737 737 369
5 314 1 1050 1050 737 1050 1050 682

6 737 1050 1 627 314 327 627 627
7 737 1050 627 1 314 627 627 627

8 737 1050 627 627 314 627 627 627
9 424 737 314 314 1 314 314 314
10 737 1050 627 627 314 1 627 627
II

12 !
737 1050 627 627 314 627 1 627
369 682 627 627 314 627 627 1

Table 5.1: Communication coats.

Entries are derived for the internet depicted in Figure 5.2 and listed in units of T, where T represents the
cost of communicating over a local ethemet.

either 56 kilobits/second or 9.6 kilobits/second. The local networks are numbered from 1 to 12. The
rectangles depict the various name servers, labeled from A to Q.

In an existing environment of this sort, the values for c^ could be easily obtained from mea-
surement studiee. For the sake of example, suppose that estimates for these quantities are needed,
as would be required if the system were in the planning stages. Table 5.1 enumerates the costs of
communicating between a client on each network and each name server using the following simple
algorithm: Communication costs are normalized so that communicating over a local Ethernet incurs
one unit of coat, denoted by T. Assuming that the communication cost is proportional to the data
transmission rate of the communication medium1, transmission over a 56K bps line costs approx-
imately 54r, and similarly, communication over a 9.6K bps line costs around 312r. The host to
host communication costs, then, are derived by adding the costs of the various communication links
traversed; added costs due to delays in the gateways have been ignored.

Notice that the costs of communicating between a client and various servers may differ by several

'This aasumption is made solely (or the sake of example. Studies show that the cost of communication over high-

speed local networks actually bears little relationship to the bandwidth. For long-haul slow-speed communication

lines, however, the assumption used in this example is more realistic.

--.. -%.i.s .%.'. . -V

■ v v ^v*r^ \^ % * tr^sr^v

62

orders of magnitude. Fortunately, the distribution of database objects among servers can alleviate
much of these differences by storing name server information close to where it is frequently used.

5.5 Assigning Authority

5.5.1 Basics

The association between an adopted naming convention and the assignment of authority for
managing the name space has been previously explored [Terry 84]. This section uses the model of
a distributed name service to quantify the cost implications of various classes of existing naming
conventions. The analysis assumes that a single copy of each database object exists; the benefits of
replicating database objects are studied in a later section. Since the cost of lookups and updates are
identical under this assumption, the analysis is worded in terms of name server lookups without loss
of generality.

Althougn a client's reference mix, which the system designer has no control over, contributes
significantly to the client's expected name server lookup cost, it plays no part in the cost of retrieving
or updating an individual object's attribute. Thus, the following analysis concentrates on formulating
Luk, ^nd ignores the clients' access patterns in E(LH) The client subscript u is left out of the formulas
to increase their clarity; this can be safely done since the performance observed by a particular client
is independent of the locations of other clients. It should be kept in mind that £*, which really varies
from client to client, is a shorthand for £„*, and C« is a shorthand for Cu*.

*

5.5.2 Flat name space

To start with a simple case, consider managing a flat name space. The two basic alternatives
are giving a single name server authority over the complete name server database ur choosing an
arbitrary authority for each database object and using broadcast or searches to resolve names. In
Chapter 2, both of these approaches were ruled out for performance reasons, among others.

In the first case, with 5* = {NSctntrai} for all k, the name server can perform any operation
since it contains the complete set of information about all named objects in the environment. Thus,
the retrieval cost is simply

ifc = Ceentral- (5.2)

This approach appears very attractive in the cost of name server lookups, though, in reality, the
single name server would have to be centrally located in the environment and hence the cost for
accessing it, CrtntTai, would generally be much greater than the cost of accessing the closest server
in a distributed name service, Cmain-

For 5* = {iV5,} with the authoritative name server for an object chosen at random, if the name
service contains no configuration data, locating the desired attribute may necessitate querying each
name server in succession until the authoritative one is discovered. The retric .al tost becomes

JTCj, (5.3)
;=»

assuming that the name servers are queried in numerical order. This second approach is costly in
temu, of name server interactions since half of the name servers must be accessed on the average
to retrieve the object's information. As noted earlier, neither approach is very practical for large
environments.

If authority attributes are introduced, so that the set 5* is maintained at all name servers for all
database objects while the database itself remains distributed as proposed in section 3.2.2, then the

WnLPTS»* ir"y^jr^)J^'JITV^)nurwjni S^ r^n i^L-^T1 r^ e^ v ITU ST» v» rF r» ■-" r« mr» v-nv-- v» !."• »--v^ VITFTT ir» i-- ir» v-" -.^ ir<. HT M- « -.IT- trr w^i^ r» w^r« »-^rn

cosf can be reduced to
Lk = Cmain + ^matn + C,- (5.4)

The first interaction (Cma,'n) resolves the name while the second (C,) performs the desired operation;
the extra database access (<imo,„) is required to retrieve the internet address of the authority.

At first glance it may appear that the cost in Equation 5.4 has more than doubled that of
Equation 5.2 for a centralized server. Actually, iJ(C,) is approximately the same as Ccentrai
assuming that data is distributed randomly and referenced with equal likelihood. Moreover,
Cmoin = rm"n{Ci,. • • > Ctf}, so the difference may be quite small. With locality of reference, studied
in section 5.8.1, E(Ci) could be significantly less than Ccentrai, and hence, the lookup cost for a
distributed name service may actually be less thnn that for a centralized service.

5.5.3 Physically partitioned name space

With a physically partitioned name space, a one-to-one mapping exists between database objects
and name servers. That is, K = N and 5* = {NSk}- Even though the authority for an object can
be explicitly recognized from its name, two accesses are required to perform a name server operation:
one to locate the naming authority and one to access the data. A special case arises if the desired
naming information is stored at the primary name server; in this case, only a single access is required
since the main ucuue server can i6cogni*6 that it is the authority and return the data directly. The
cost of a lookup is thus

+ Cjt if fc # main, , .
if A: = main. ' ' '

63

\ ''mom

However, if the total number of name servers is small, clients can easily cache the network addresses
of the various name servers, thereby reducing the cost to

Lk = Ck. (5.6)

The access to the local name server has been eliminated since the individual hosts are knowledgeable
enough to query the correct storage site directly. The resulting lookup algorithm is optimal given
the assumption th-U naming data is stored exactly once.

5.5.4 Organizationally partitioned name space

Suppose the name space is partitioned according to administrative organizations and that each
organization's data is managed by a single name server, 5* = {iV5i}. If each name server knows
which server has responsibility for each organization, name server queries can be processed in two
steps as before. First, a client's local name server maps the organization name to the authoritative
name server for that organization and returns its network address. Then the remote name server is
contacted to retrieve the appropriate naming information. The lookup cost is basically the same as
Equation 5.4 for a flat name space using authority attributes for name resolution,

The major difference is that the organizational clustering serves to rednrp the total amount of con-
figuration data compared to a flat name space with an authority attribute per name.

Note that, unlike physically partitioned data, two database retrievals are always required since
a name server can not determine whether or not it is the authority for the desired data without
consulting the local database. One round trip transmission cost can be saved, however, if the primary
name server retrieves and returns the name server entry directly upon discovering that it is the storage
site for the desired data. Thus,

^fc = CVna.r, + <imam if Sk - [NSmatn). (5.8)

■>:'^"->JS^1J1^:." :/^^^^:-i:-i i^üh^-ü.-^: i--'>-:l--^--iv^>l--l-^v!l-^>'-!

rm r»-,-> s^- .~- s-" V^T* rm «FA "^fc"

64

Often, rather than all of an organization's objects having identical authorities, the authority
for objects is distributed within an organization. In this case, the authority for each organization
contains infornir*<on about which servers are authoritative for objects within the organization; the
initial context need only contain a list of authorities for top-level organizations. The resolution chain
for names is thus increased in length, and the cost of an operation becomes,

£* = ({Cmain + ^moin) + Cor» + dorg) + Ci- (5.9)

The nesting in the formula corresponds to the iterative name resolutic calls.

The analysis for longer name resolution chains is a straightforward extension. If the name resolu-
tion activity performs a context binding at the list of servers, iVS,,, iV5i,,..., JV5,,, where ii = main,
then,

£* = £((?.,+<*,,) + £.. (5.10)

Therefore, assuming database objects are uniformly distributed throughout the environment, the
expected cost of retrieving an attribute stored in database object dbk is given by,

B{Lk) = ((Cmai„ + dmain) + (t- l)(C + 3)) + C.. (5.11)

Of course, each step in the resolution chain does not necessarily require communication between the
client and a name server. For example, if NS,i = NSij^l for some 1 < 7 < t, then the communication
cost cly can be avoided. Thus, the formula given for L* in Equation 5.10 can be "onsidered an upper
bound on the cost of a name server operation-

5.6 Benefits of Replication

Assuming that a read-any/write-all algorithm for replicated data is adopted, replicating database
objects decreases the cost of name server lookups, but increases the coat of update operations. The
main cost of increased replication results from the need to maintain consistency among the various
copies of a database object when updates are applied to the object. Although the update cost depends
on the exact algorithm employed for maintaining consistent replicated copies, a simple estimate can
be obtained by adding the costs of performing em update at each individual authoritative name server.
For an organizationally clustered name space, the update cost can then be estimated by,

Lupdattk — C„ain + dmain + JL, ^i' (5-12)
iV5,(=S»

Observe that the update cost is an increasing function of the degree of replication.

On the other hand, with replicated data, any available copy of an organization's name server data
can be used to answer queries. For performance reasons, accessing the closest authoritative name
server for the named object is generally desirable. Assuming that the closest authoritative name
server, NSmin,, € Sk, can be determined with negligible cost1, the name server lookup cost becomes

^lookup k =: ^main i "main T Cyrnirifc. (5.13)

This formula looks similar to previous formulas, such as Equations 5.4 and 5.7. However, the cost
should be less with replicated data since the name server accessed by various clients, iV5m,nil, could

3 For a large environment with a substantial number of name tenets, determining the closest server may not always be

feasible. ID the Grapevine system, each registration server maintains a complete list of the other servers ordered by
distance Schroeder et a'.. 84'. For other environments, it may be sufficient for a server to keep lists of neighboring

servers: if none of the neighbors are authoritative for the current context or object, meaning all authorities are

distant, then an authority could be arbitrarily chosen without unduly impacting performance.

. ^ - ..< ''»-N <Ci •'. •'. -%.•"► ■'
1 •■ '■■ A ".~ -- -■" V.V V V •-. i.' *. •", -", ■f, «", >". • . ■ . - . •"'. •". 1 . • .-' ' •■''■%.'•''-
.■«.', _'» _'. »V .V.J« w3L„WV wV-'»jij >_»_kj_ * » » ^ . > ^IL^JL-j » ^ « vr* L\ LV ■'« t—i__^_i . WJ ■j.-?J«.'-trji-,^_

! wj v\: m vm WA.-WJ-W i '»^-rv^?i^^- — , v- ■ "i^,;

client's re plication factor R s

network 1 2 3 4 5 6
1 297.35 145.99 84.83 56.72 41.53 32.15]
2 261.76 124.96 74.40 53.69 43.39 36.94
3 271.47 125.76 74.24 53.63 43.38 36.94
4 300.59 142.34 82.65 55.96 41.34 32.12
5 576.76 398.65 323.48 281.71 251.52 226.25
6 645.18 548.70 488.14 435.57 387.66 343.13
7 645.18 548.70 488.14 435.57 387.66 343.13
8 976.59 896.22 849.47 808.41 769.71 732.08
9 369.00 307.04 278.71 256.05 235.77 216.55
10 645.18 548.70 488.14 435.57 387.66 343.13
U 645 18 548.70 488.14 435.57 387.66 343.13
12 439.41 347.85 302.26 271.68 246.62 223.93

avg. , ^06.14 390.30 335.21 298.34 268.66 242.46
A% — -22.89 -14.11 -11.00 -9.95 -9.75

Tabi 5.2: Effects of replication on lookup costs.

Entries give the expected cost of a name service lookup in units of T.

differ from client to client, whereas before each client was forced to access the same server. Never-
theless, without some knowledge of how the authoritative name servers are selected and how many
exist for a given database partition, comparing the costs of the different name space management
techniques is very difficult.

One simple approach woidd be to distribute R copies (R < N) of each database object uuxlormly.
In other words, R authoritative name servers are chosen at random for each named object. Without
loss of generality, assume for the moment that the name servers are ordered relative to a particular
client such that C, < C; for i < j and NSi = NSmain. Under this {»sumption, the expected lookup
cost can be computed as follows.

.v

E(Li00kupk) - Cmain + ^moin + 2j Prol>(* = m«n*)C, (5.14)

= C„ + dn (5.15)

This formula allows one to quantitatively determine the benefit of replication on performance by
increasing the value of R. Of course, the benefits that can be achieved depend greatly on the
physical configuration of the internet and the placement of the name servers.

The random selection of a fixed number of storage sites for database objects is a particularly
naive configuration technique. Generally, if the client reference patterns are known, the cost of
lookup operations can be reduced by distributing data intelligently to coincide with its regions of
interest. The cost formula derived above in Equation 5.15 based on randomly »elected storage sites
thus provides a good indication of the minimum achievable performance.

Using the configuration in Figure 5.2 and the associated estimates of communication costs given
in Table 5.1 along with Equation 5.15, Table 5.2 presents the effects of replication on the expected
performance of name server retrievals assuming that copies are uniformly distributed. In this example,
the database access cost, tf,, is taken to be 6T in accordance with experience indicating that, for

65

:->>s-^^^]v-^^vc^;-^/>:v^^^r^vS^: 3 Mi» ^ It ü if ■■ Sm 5 ■ ABJ". »_n «.A «^r, «„*! «_A M^ m. , ^.1«_.i * * * •\ A*.i_J4 * t-_^a'»JL-,

66

retrieval over a local network, the cost of database queries generally dominates the communication
cost by about a factor of 4 to a factor of 8. The number of copies of each partition has been varied
from 1 to 6. The expected coat of a name server query is computed for a client on each of the 12
networks and then averaged over all networks. The last line of the table indicates the change in the
average expected cost resulting from an additional copy of each database partition.

On the average, having two copies of the data instead of one reduced the expected lookup cost
by over 22%. For networks 1-4, which a e connected by high speed lines, improvements of over 50%
are achieved. Notice that clients on network 8, which has no local name server and is separated from
the rest of the world by low speed lines, suffer the worst performance. Furthermore, replication does
not help them aa much as others. Networks 1 and 4, which have three local name servers apiece,
benefit the most from replication. In all cases, adding an extra copy of the name server data has a
substantial impact on performance regardless of the replication factor. These performance increases
are due entirely to reducing the amount of communication between clients and very remote name
servers.

5.7 Name Server Failures

With partially redundant name server data, the failure of a name server should potentially degrade
performance, but should not render any information unavailable provided the number of failures is
less than the degree of replication. If the number of name server failures, F, exceeds the degree
of replication, A, then all responsible name servers for the information may have crashed. The
probability that a given piece of data is Inaccessible becomes -f

^ F-l
Prob{data inaccessible) =] [rr—•

i=o ~

which is always zero for F < R.

Basically, failures introduce a variability in the degree of replication of database objects. Not only
do different database objects have different numbers of available copies depending on which servers
are down, but also a given object's degree of replication varies over time.

The effect of name server failures on performance can be gauged by incorporating such failures
into the previous lookup cost formula. For the set of failed name servers selected at random, Sp with
F < R, the lookup cost formula remains as in Equation 5.14,

.v
EiLtookupk) = Cmotfi + dmain + ^2 Prob{* = "»«"fc) Ct. (5.16)

i = l

But the probability of retrieving the desired resource information from name server t, Pro6(i = miru),
becomes substantially more complex. The name server operation on dbk ia performed at NS, if and
only if name server i stores the data {NSi € 5*), is still alive (TV 5, ^ Sf], and all authoritative servers
that are closer to the requesting client are inaccessible {NSj € S? Vj such that NSj & Si, t~\ j < i).

The probability of name server i being available is simply,

-£■
Combinatorics says the probability that q authoritative name servers are closer than NSi is given by.

R

Si-. ".I i —■. r>_/A?Li-" J .■.-" ji '-• "i ■ • " J»'.* "J- ,"> ■■ j 'j!." J .A J '_» J. "jt" -« •-!• '-1'-«.'-* *■.«. *JL"JI 'JI "J _?.* .«,"^ 'JL'JT -'_! "iji TJ- "_■« .".* r-nr.» ;

"v» ",* -j» r_» - ■- '«»*"'." v 1 1. « JM .'II "% IT. i'V i V ^ ^. I ". : ^. ' H, «■ « . », I «. ! 1. I» I «—^■^^^»■Ti^^^^^^^^^

67

client's number of failures F =
network 0 1 2 3 4

1 41.53 46.00 51.42 58.08 66.36
2 43.39 46.42 50.22 55.06 61.32
3 43.38 46.39 50.17 55.01 61.31
4 41.34 45.64 50.83 57.21 65.19
5 251.52 260.40 270.13 281.03 293.53
6 387.66 401.75 416.19 431.01 446.33
7 387.66 401.75 416.19 431.01 446.33
8 769.71 781.09 792.65 804.42 816.53
9 235.77 24173 247.87 254.24 260.92
10 387.66 401.75 416.19 431.01 446.33
11 387.66 401.75 416.19 431.01 446.33
12 246.62 253.99 261.77 270.09 279.14

avg. 268.06 277.39 286.65 296.60 307.47
A% — 3.25 3.34 3.47 3.66

Table 5.3: Effect! of failures on lookup cost» for A = 5.

Entriss give the expected cost of a name service lookup in units of T.

while the chances that all q of them Me dead givea that NSi is alive ia,

n.i^T
>=0

Putting this all together and enumerating over possible values of q,

Prob{i = miriit) = (5.17)

Returning to the sample distributed computing environment in Figure 5.2, Table 5.3 presents
the effect of failures on the cost of retrieving natne server information. Again, the results are given
for clients on each network and averaged over all networks. These results indicate that name server
failures actually degrade performance by very.little for a replication factor of 5. Even if almost one
fourth of the name servers are down, the expected lookup cost increases by only 15% on the average,
and around 50% for the worst case.

The availability of name server data, not performance, appears to be the primary concern when
considering name server failures. However, recall that the simple name server model used in this
chapter assumes that the load on servers does not vary over time. With failures, added congestion
at servers would likely increase the cost of name service operations more than the analytical results
suggest.

5.8 Exploiting Client Behavior

5.8.1 Locality of reference

A name service client's behavior is characterized by the frequency of operations it performs and the
database objects those operations affect. Re. all that a particular client's reference mix is represented

'->■ -J-r-» .-
st.^:-:-^.->.-:v ,"...-^ rf^*J «•J«r. „J."- AJ WJif..KV >

68

by a list of the probabilities of accessing individual database objects, rui... ruK for client u. and that
the effect of the client's referencing behavior on its expected operation cost is as given in Equation 3.1:

K

E(Lu) = ^2rukE(Luk). (5.18)

Locality of reference occurs if the most frequently accessed database objects are those that can be
operated on with the lowest e.cpected coat, generally objects that are in the proximity of the client.

If the client references all database objects with equal likelihood, ruk = r^i for all I > k,l < K,
then the overall expected operation cost does not depend on the particular assignment of authority,
assuming that all name servers are assigned the same number of database objects. Even if database
objects are referenced with varying frequencies, the expected lookup cost remains independent of
the client's particular reference mix as long as the assignment of authority for database objects is
performed arbitrarily.

As an example, for a simple organizationally partitioned name space, the expected cost obtained
from plugging Equation 5.7 into Equation 5.18 is

K

E(LU) = £ rukE(Cu mo.n + (iu main + Cui). (5.19)

K

— 2^ r<tl'{C'u main + "u moin + E{Cvi)).

t = l

If the authority for database objects is randomly distributed among name servers, that is, the storage
site for a database object is chosen arbitrarily, then E{CUi) = Cu and Equation 5.19 becomes

K

E{LU) = (Cu „,„,„ + du main + Q J^ ruk (5.20)
*=i

= l^u main i Qu main + C/u.

Note that this expected cost is independent of the values for rui... rUK.

Substantial gains in the expected operation cost can only be achieved by storing data close to
where it is frequently used. In other words, E(LU) is reduced if for two database objects dbk and
dbi, iut < Lvi when rak > r,^. Fortunately, localities of interest naturally arise in large distributed
systems. For example, clients residing in a local environment, such as Berkeley, are presumably most
often interested in objects created within that environment, and much less frequently interested in
referring to distant objects. The assignment of authority for storing database objects should be done
intelligently to exploit the measured or expected locality of interests. Replication can be used in
cases where two geographically-distant clients share certain localities of interest. Chapter 6 discusses
the results of an experiment to measure the locality present in the Grapevine system.

5.8.2 Lookup/update ratio

A second aspect of clients' referencing behavior that can be exploited to reduce the expected
name service costs is the frequency of various operations, such as the ratio of update to lookup
operations. While E{La) is the expected cost of performing a given name service operation, the
overall cost incurred by a particular client, E(TOTALu), is the sum over all operations, weighted by
the probabilities of those operations. For the two operations, lookup and update, this is given by

EITOTAL») = Prob(lookxip)E{L,ookui) J + Prob(update)E{Lupda,t J (5.21)

where Prob(lookup) + Prob(update) = 1.

',\l."vlvlv"\r^^vV.v^'.«>^Iv/;jtVl-^'-J^^

'JVVV^A^V".' «?T^-l -<.'~7r'*-^r'

Generally, techniques that reduce the expected cost of one operation increase the cost of an-
other. This is, choices can be made that trade off the costs of different operations. For example, as
demonstrated earlier in this chapter, increasing the replication facto; . ' tabase objects improves
the cost of lookups, but renders updates more expensive. The proper choices for configuring the
name service thus depend on the expected ratio of operations, Prob{lookrip)/Prob(update). For
Prob{lookup) » Prob{update), efforts should be made to reduce E(Ltookup u)i and vice versa for
Prob{lookup) « Prob{updaU).

Given that name services are primarily used to locate and maintain information about named
objects, and that long-lived objects move infrequently, one would expect name service lookups to be
much more prevalent than updates. Therefore, one's intuition would be to optimize the cost of name
service lookup operations at the expense of updates.

5.0 Summary

Once a naming convention and associated name space management strategy have been selected,
the observed performance of name service operations is dictated primarily by the placement of the
name servers, the distribution of the name service database, and the patterns of reference to name
servire information. The simple analytical model of a distributed name service presented in this
chapter allows one to quantitatively measure the high-level impact of a name service's configuration
on a given client's level of performance.

Since the costs of communicating with name servers in a large distributed computing environment
may vary from client to client and server to server by several orders of magnitude, minimizing the
number of interactions with servers and localizing those interactions is the key to low operation costs.
The name management policy adopted determines the amount of communication required to resolve
a name and access the appropriate database object. Reducing the cost of this communication is
achieved mainly through replicating name service data and exploiting inherent localities of client
references.

The random selection of a fixed number of storage sites for database objects was analyzed as a
particularly naive configuration technique. For such a scheme, the degree of replication of database
entries was shown to considerably impact the cost of accessing a given database entry. In cases where
some locality of reference exists, and data is distributed intelligently so as to coincide with its regions
of interest, the cost formulas based on randomly selected storage sites can serve as a lower bound on
performance.

69

,^V\S\VL% .VA-V'X'l^^

»V^ WL^WVJ ^ l^" ■" ^."^ ■," %T^ir. "JT". ■"

70

A
i

v
u
'i
\

Chapter 6

Measurements of Grapevine

•i

i
• i

Experimental measurements of Xerox's Grapevine registration service indicate proper-
ties of clients' reference patterns that can be exploited to enhance performance, including
large localities of interest. The ratio of name service lookups to updates initiated by
electronic mail clients, which is high for individuals, is surprisingly low for group names
in Grapevine. The measurements, used as inputs to the model presented in the previ-
ous chapter, demonstrate the benefits of intelligent name service configuration and client
reference locality on name service response times.

• I

• i

•i

6.1 Basics of the Experiment

6.1.1 Goals

The previous chapter discussed several aspects of clients' behavior that have drastic influences
on the performance of name service operations. It also suggested ways in which, given knowledge of
the clients' behavior, such behavior could be exploited to improve performance. Prompted by these
analytical results, an experiment was undertaken to obtain actual measurements of the amount of
reference locality that exists in a large distributed community; tabulations of the frequency of various
operations performed by name service clients were also desired.

j

• I

6.1.2 Why Grapevine?

The Grapevine registration service was chosen as the object of the study since it is perhaps the only
widely distributed name service with a sizeable user community. Close to 5000 individuals within
the Xerox Corporation use Grapevine daily to exchange electronic messages. At the time of the
study, the Grapevine system consisted of 20 dedicated servers distributed throughout the continental
United States, with one server in Canada and one in England. Its implementors claim that, as of
the Summer of 1983, over 8,500 messages were submitted to the Grapevine mail service in a typical
day [Schroeder et al. 84). Figure 6.1 shows the interconnection topology of the 17 Grapevine servers
that existed at this time.

Large widely distributed systems that are heavily relied upon by users to perform their daily work
are difficult to modify. Adding hooks to such a system to keep statistics and obtain measurements
would be painful at best, probably unacceptable. Fortunately, Grapevine servers maintain logs of
their activities. Although these logs were designed as a tool to monitor and debug the system
[Schroeder et d. 84], they contain sufficient data to derive most of the desired numbers. A snapshot
of Grapevine's logs thus served as the basis for studying how Grapevine is used by its clients.

•I

•I

• I

Al

> -j. ." •;>is>>v>^>^i>^^:-^:-^^^^^;'S:v>:>:- ■*'_ M*-__*"-. flüL **_- BT» if ■ t

r-^-s -w j ^-r T-f ■• ■ I mn« w«"^ r.v-'jiFi

Semillon

PinotNoir

ChÄrrtonruiy

ttesHm?

Concord

^ninBJÄttf

öreewKtn^

Interconnections:

MM ethernet interface

_ ethernet

«». 56Kline

 9.6Kline

Figure 6.1: Topology of the Grapevine internet.

71

L__V J!^ Jt 1^. JW.'. ^.-^,-^ ■■'. ^■>^. ^i--- ^ - - ■■ « ■ L L-i»,_i.:j-^t _.v —'«.-'.j-

• T>r * ~. <"

72

6.1.3 Grapevine's logs

Each Grapevine server keeps a local log, consisting of 120 512-byte Alto pages treated like a
circular buffer [Birrell 83]. The log contains a list of one-line log records pertaining to both the
registration and mail services. Date records start with octal 377 and give the current date, such as
•*10-Dec-83". All other log records consist of an indication ci the current (local) time, relative to the
last date record, followed by a description of some activity. For example, if the server "Cabernet"
waa booted at time 17:12:38, it would write a log record of the form,

17:12:38 Grapevine: Registration Server Cabernet.gv. Mail Server Cabernet.ms

The contents of individual log records depend on the particular activity bei" - logged. No explicit
relationship exists between adjacent log records other than their chronological . lering.

When half of the server's log fills up, the server dumps it to a file server while the other half is
being used. Forty files containing full logs are kept on a file server for each Grapevine server. These
files are themselves treated like a large circular buffer, that is, the dumping of a server's log causes
the contents of the oldest log file to be overwritten. Forty log files (2,457,600 bytes) should be large
enough to hold a week's history [Schroeder et al. 84).

6.1.4 Retrieving, parsing, and analyzing log data

The first phase of the study involved retrieving each server's log files from the appropriate file
servers. Using the Cedar programming environment, this was accomplished from a program using
a file transfer protocol; even the servers in Canada and England could be easily accessed. The logs
files were then concatenated into a single file for each server, being careful to preserve the records'
chronological ordering.

This provided a snapshot of Grapevine's activity for a certain period of time, the period varying
from server to server based on its amount of activity. Some servers had months of log data while
others had barely a week's worth. For consistency, each server's log file was pruned to span exactly
one week. That is, all records outside of the range 00:00:00 PST December 4, 1983 to 23:59:59 PST
December 10, 1983 were discarded1. This left about 20 megabytes of log data to be analyzed.

The templates for various log records can almost always be identified by the record's first word.
The i irser built to read the log data takes advantage of this fortuitous property in the following way:
tbe first word of a log record, denoting the record's type, is read and sequentially compared against
a list of valid record types. If a match is found, the semantic routine associated with the record type
is called to parse and analyze the remainder of the record. This allows new semantic routines that
perform different types of analyses to be introduced without changing the basic parser. Uninteresting
types of log records were given "null" semantic routines that simply skipped to the end of the record.

Initially, a routine that incremented a counter associated with the particular record type was useH
as the semantic routine for all log records. The resulting counts were then used to arrange the list
of valid record types by their frequency of occurrence. The performance improvements accrued from
this reorganization were much appreciated since parsing the complete 20 megabytes of log data took
several hours on a Dorado personal computer.

'Often « certain activity, such a* the delivery of a message, generates several log records. Sunday at Midnight, a

time of low network activity, was chosen as the cutoff point to help minimiie the chance of discarding a subset of

related log records.

f V "> V * V V V '«" "■.-.' 'V~'.'\" '.•".■ V V"' ' " " •',"'»• -" ■' ."*•.'•. • . <',. -". ■.

■ 4/*' M^^^ .%'l^' "-" "v" ■<*,w 'CT ^7 *_"' 5

6.2 Locality cf Reference

6.2.1 Methodology

A system's locality of reference was de'ined in Chapter 5 as "the degree to which local name
servers arc accessed more frequently than distant servers." In Grapevine, "local" can be interpreted
as belonging to the same registry since registries correspond to geographical divisions. Localities of
interests can V ascertained with a matrix that is indexed in both dimensions by registry names; rows
of th matrix indicate the fraction o' name service operations requested by members of the row's
registry concerning names in the columns' registries. A diagonal matrix would suggest strong locality
of reference.

If Irapevine logged all name service operations, then a locality matrix could be easily constructed
from the collected log data. Unfortunately, ''o conserve space in the log file. Grapevine does not
record name serv'^e lookups. Thus, a different strategy was needed: measures of the locality of
reference in frapeviae were obtained irdirectly by observing the eiectrozJ- .anil traffic within and
between registries. Although, this does not account for all clients of Grapevine j registration service,
the mail service is by far that largest client.

Grapevine's log data includes records of many of the events occurring in the delivery of an
electronic message. Figure 6.2 depicts the log records written at various stages in the delivery process.
Ea .4 message, upon creation, is assigned a unique identifier called a pottmark [Birrell et al. 82].
The first log record written concerning a particular message indicates the message's postmark and
its sender. When the complete measnge as been accepted for delivery by a Grapevine server, it is
deposited in an input queue, and the number of explicit recipients (before distribution list expansion)
is logged along with the message's size. After the mailboxes for all recipients have been located, two
log records are generated: one categorizes the recipients as being local, remote, bad, and so on,
while the second log record enumerates the names of the recipients. The message is then placed on
forwarding queues to be sent to the proper servers for remote recipients. Eventually, a recipient reads
his mail, including the forwarded message, and an indication of how many messages were retrieved
by the user is placed in the log.

From the collected Grapevine log data, the "Created" and "RecipientLog" records were used to
constiuct the desired locality matrix. For each of a message's recipients, a name service lookup
must be performed to determine where the recipient's mailboxes reside; these lookups are directly
attributable to the message's sender. Thus, the sender and list of recipients for every message are
sufficient to generate a locality matrix for Grapevine mail traffic. In this matrix, the name server
lookups resulting from processing mail messages are accumulated according to the registries of the
mail recipients.

Two passes over the log data were required to build the locality matrix. The first pass parsed
the "Created" log records and built up a stable BTree whose keys were message postmarks; the
data associated with a key consisted solely of the registry of the message's creator. Note that the
records concerning a g ven message may be dispersed in the log files and may even be generated by
different servers, but taey can be correlated by the message's postmark. The second pass read all
of the "RecipientLog" records and used the BTide, containing about 25,000 entries, to determine a
message's sender.

Only individual recipients, not the nsmes of distribution lists, were counted in constructing the
locality matrix; although distribution lists must reside is some registry, they often do rot exhibit the
geographical significance that individuals do. Conceptually, a message's recipients can be viewed as
a tree in which internal nodes repi-esient distribution lists that get expanded into other distribution
lists or individuals. The leafs of the recipient tree, the individuals, were used to judge the observed
locality.

This methodology is sound except for a rnaj)r deäriency in the logs maintained 1 ' the Grapevine
system: the complete list of recipients may not Se kept in the log file. Grapevine confines "Re-

73

--w.^jv--;-1.-^ ivv jvtjv -fTi. t^iiv« a * r* v '•~''.~* '."•'."''. »ji ■ B ^jr »31 »i pj^j '.*"'/ rjr"w r? "."."WJ ^ i^J^rj ^\ ^, wji v »\. FT W-J wyw-j-'rV»"; • ,7" l^«" K.' W" i

74

Created <msg>: Sender <RName>
Client input: <msg>, <n> recipients, <n> words

Delivered <msg>, <n> local, <n> remote,...
RecipientLog <msg>: <RName> <RName> ...

forwarded <rrsg> to <RName>

Server input from <RName>: <msg>, <n> words

Delivered <msg>, <n> local, <n> remote,...
RecipientLog <msg>: <RName> <r.Name> ..

Mailbox <RName>: emptied, <n> messages

Figure 6.2: Logging during mail delivery in Grapevine.

11-" |,T" FTTT* " '.-! ■v^. "V-i "in -.^ T^ T. ^r T. T. ^n ^n 'm't^iii ^ WT^T.TC

75

Sender PA ES Wbst Henr
Recipients

Dlos Pasa Sthq Rx other ARPA
PA 65 16 5 3 2 4 0 2 1 2
ES 24 51 8 7 2 3 0 3 2 0

Wbst 22 32 28 9 3 3 1 1 1 0 j
Henr 21 29 13 28 2 3 0 1 3 0
Dlos 27 33 8 5 15 7 2 2 1 0
Pasa 22 8 4 2 1 59 0 1 2 1
Sthq 11 9 8 0 1 0 70 0 1 0
Rx 33 21 2 2 1 1 0 37 3 0

other 29 15 4 3 2 6 0 1 39 1
ARPA 32 33 14 10 3 5 0 1 2 0

Table 6.1: Locality of interests in Grapevine (normalised by sender).

Entries are percentages of mail traffic normalized so that rows sum to 100.

cipientLogr records to fit in 150 characters. That is, about ten recipient names are logged on the
average; when the "RecipientLog" record fills up, remaining recipient names are discarded. Thus, for
large distribution lists, only the first several members are recorded. Statistically, since distribution
lists are sorted by user name and not by registry name, one can argue that the initial subset of
recipients characterizes the composition by registry of the complete list. However, in building the
locality matrix, the truncation of recipients serves to decrease the influence of large distribution lists.
Whether messages sent to large numbers of individuals exhibit different localities than those sent to
a few recipients is difficult to conjecture.

6.2.2 Results

Table 6.1 gives the percentage of lookups directed to various registries as a result of mail sent from
a specific registry, listed down the left-hand side. Only registries with more than 100 individuals are
listed, with the others being grouped together under "other". Mail traffic to and from the Arpanet
gateway is indicated under the heading "ARPA".

The diagonal of the table indicates the amount of observed locality. For example, 65% of the
messages originating in the Palo Alto registry (PA) are directed to recipients in the same registr;.
This means that 65% of the name server lookups needed to locate the mail recipients can be performed
locally if the UPA" registry is maintained close to its members. The same results normalized by
recipient instead of by sender, so that the columns sum to 100% instead of the rows, are presented
in Table 6.2.

For the expected high degree of locality in mail traffic, the diagonal of Tables 6.1 and 6.2 would
dominace. In reality, the numbers show that the "PA" and "ES" registries participate heavily in the
message traffic of all registries. For instance, of all the messages originating in "Dlos", only 15%
remains in "Dlos" while 27% and 33% is destined for "PA" and "ES", respectively. The "Wbst"
and "Henr" registries are in a similar situation. This implies that the authoritative name servers for
the "PA" and "ES" registries receive a lot of non-local lookup requests unless these registries are
freely replicated. Due to the geographical significance of registries in the Grapevine system, naming
authorities for the other registries can be easUy located close to their main clients, the members of
ihe particular registry.

The measures of locality presented in the preceding two tables clearly confirm the suspicion that
references to objects in large distributed computing environments do exhibit localities of interest.
Nevertheless, they are specific to the Grapevine configuration and may not be valid for other dis-

fcJli« JL« LM X^itf hJLk j .A^> » J . » . f-., ■ .ilk i ^ . ■ . L. ^j„.. ■ . ■— " . * . ' *'" • ' . P*' ' ■ *"* * ** ■ • -'" »"^ -~*'_*'P t* r-'" J' P.*" -'"■'- ■''* *"* »,'" UN«-"' ■*

■■ ■*. T T - V "■ V *- W *-F » ■ ■'?"• »"11 F-""»

76

l~ I Recipients
Sender PA ES Wbst Henr Dlos i Pasa Sthq Rx other ARPA

PA 54 17 17 13 22 23 15 32 13 73
ES 17 45 22 27 25 13 10 32 25 13

Wbst 5 9 24 11 9 5 8 3 7 5
Hem 2 4 6 17 4 3 1 2 4 2
Die« 2 3 2 2 14 3 4 2 3 i !
Pasa 2 1 i 1 2 35 0 2 4 4
Sthq 0 0 1 0 0 0 55 0 1 0
Rx 1 1 0 0 1 0 0 23 3 0

other 1 1 0 o 1 1 1 0 28 2
ARPA ; 15 20 27 28 23 17 6 4 13 o 1

Table 6.2: Locality of interests in Grapevine (normalised by recipients).

Entries are percentages of mail traffic normalized so that columns sum to 100.

Sender PA ES Wbst
Recipients

Hem Dlos Pasa Sthq Rx I
PA 42 8 6 5 4 15 2 17 1
ES 16 24 10 12 5 11 2 20

Wbst 13 14 Of 14 e 12 4 8
Hem 11 11 13 40 4 11 1 8
Dlos 14 12 7 7 26 19 6 9
Pasa 5 2 2 1 1 86 0 3
Sthq 2 1 3 0 0 0 93 0
Rx 1 7 3 1 1 1 1 0 88 \

Table 6.3: Locality of interests in Grapevine (adjusted for registry sise).

Entries are percentages of mail traffic projected for registries of equal size and normalizeu by sender so that
rows sum to 100.

tributed systems.

The numbers are particularly sensitive to variations in the sizes of different registries. Much of
the interest in the uPAn and "ES" registries is due to their large size; both are twice as big as any
other registry. The effects of these size ''fferences can be accounted for by normalizing the amount
of mail traffic so that the measurements represent the number of messages per individual instead of
the number of messages j<« registry. Table 6.3 gives the percentages of message traffic normalized
by sender once the registry sizes are factored out. It indicates the expected observed locality if all of
the registries were of equal size.

Notice that in ail cas^ , unlike in Table 6.1, the diagonal percentage exceeds all others, meaning
that local traffic is always more common than remote traffic. If client references were uniformly
distributed, all of the percentages would be around 12.5%. For the first five registries listed, many
of the percentages are, in fact, in the 10-15 range. An obvious difference in basic traffic patterns.
however, «cists betwe«"n the first five and last three registries. The last registries. ■'Pasa", "Sthq-',
and "Rx", exhibit mu-h higher localities than expected. Once again, the need for measurements of
real systems is reconfirmed.

Tb >apevine measurements are also dependent on how individuals are assigned to registries.

- ^-. j. "> r^:^ r^ -JL •, iiiiA. ■ U^^Jli-VOv-'O tUWL'.L"^ .1*. ^«L

"-• r'.» »yi "W »y '.,■ "v." ?W r^ "J> 'WTaniWTiP "J* fW "-" rJ" T*" "-', IP -^ -t" /■#■ r*" ri> nF; *■ rwrwvnrm n-s wr «i ig-vi^wug« n w-i »-» -nt r mmez m

If Grapevine registries were based on organizational boundaries that were independent of physical
locations, that is, organizations wsre themselves globally distributed, then different localities would
result. Moreover, how to exploit those localities to achieve gains in name service performance is
unclear since clients with similar observed interests would be geographically dispersed. In general,
exploiting the locality of clients' referencing behavior requires clustering clients with similar interests
so that the name service data they frequently use can be made locally available, and hence, cheaply
accessed.

6.3 Lookup/Update Ratio

6.3.1 Methodology

Grapevine's logs also contain enough data to study the conjecture that name service lookups
are much more prevalent than updates. The mail system uses the registration service to maintain
information about different types of objects: users and distribution lists. Users are identified by
individual names while distribution lists have group names. Separate lookup/update ratios were
obtained for these two types of names.

The number of lookups performed by the mail service was obtained by adding up the number of
local and remote mailboxes reported in all of the "Delivered" log records. Recipient logs Wv;re used
to separate the number of distribution list lookups from individual lookups. However, expanding a
distribution list eventually results in lookups of individuals.

Updates to the Grapevine registration service are recorded in log records of type "RS op". For
 1_ j.i._ i «..;__

14:38:11 RS op by 166#204. R-Name Newman es Create Individual
1439:14 RS op by 166#204 R-Name Newman es: Add Mailbox Camay ms
14 3933 RS op by 166*204 R-Name Newman.es: Add Mailbox CheninBlanc.ms

might result from registering a new employee with Grapevine, while

8:55:52 RS op by 56#113. R-Name SportsCarsf es: Remove Member Ferrari es
9 41:00 RS op by 55#217. R-Name Courmetsf wbst Add Member BCrocker pa

indicate membership changes to existing distribution lists. The various types of update operations
were tabulated from log records of this type.

6.3.2 Results

In a one week period, 331,039 lookup requests were presented to the Grapevine registration
service by the mail service. Of the 531,039 total lookup requests, 528,338 concerned user names,
leaving 2,701 accesses to distribution lists. Table 6.4 presents the number and variety of updates to
user attributes, while Table 6.5 lists the updates to distribution list« for the week. For individual
mail clients, PTob(lookup)/Prob(update) - 528338/246 = 2147.72. The assumption that the cost
of name service lookups dominates a client's overall cost has been verified, at least in the case of
mail senders and recipients. On the other hand, distribution list are updated much more frequently,
Pro6(/ooA:up)/Profc{update) = 2701/989 = 2.73. The ratio of lookups to updates for individuals and
groups differ by three orders of magnitude!

This simple study of one name service application client, a mail system, illuatrates an impor-
tant point: not only does the referencing behavior of clients vary from client to client, but also the
operation nux depends heavily on the types of named objects. Both factors must be taken into consid-
eration when designing and ronfiguring a name service intended to serve a wide class of applications
and maintain information about a diversity of named objects.

77

L-V **''"■<'*- ""^."■""w'^ V-./'o"' "'• '"- "'' "^A^frt *** **• '%*'* '*-■*-■■'-"'"•. *"o"- **- "'- *"•* ^o-t'"- "'■ '"- ■ - ■ > " -» -^ PJI_i_kXj^LM -^A '^ut ■_. -.- ■j -ji^ui -^M *^i -J^J "_* -_■ -j ■.«"_*•?_, \J. *-«-ji "^-rJI. ji ■_* fj "Lfc ■

1 -^n "w mi1 \P^I ! VWX^B ST" J^11^l^JT"Vf'V'l

78

Operation # per week
create individual 31
delete individual 25
add mailbox 116
remove mailbox 74
total 246

Table 6.4: Individual updates in Grapevine.

Operation # per week
create group 6
delete group 2
add self 102
remove self 64
add member 395
remove member 420
total 989

Table 6.5: Group updates in Grapevine.

6.4 Applying the Name Server Model to Grapevine

6.4.1 Grapevine's configuration

The benefits of locality, based on the localities observed for Grapevine, can now be quantified by
applying the name sen- ~r model of Chapter 5 to the Grapevine configuration. Recall from Equa-
tion 5.1, the expected operation cost for a particular client is analytically modeled by

E(L, (6.22)

L, oakupuk *{ (6.23)

= y]rufcJ5(Lu4).
k = l

The cost of accessing a specific registry waa presented in Equation 5.13 for replicated registries: if a
client's main server is authoritative for the registry in question then the coat is given by Equation 5.8.
That is,

(-Tnain ^ "main U f* Jma{n € At,

Cmain + dmain + Cm.n..,, otherwise.

To estimate the benefits of locality in Grapevine, the overall expected lookup costs for various clients
are computed for both a uniform reference pattern and the locality of reference observed in the
Grapevine environment.

Rather than obtaining actual measurements of the communication coats for the Xerox Research
Ir.cernt't, the modeled costs obtained in Table 5.1 for communicating between a client and a server
ire revved. Comparing Figure 5.2 with Figure 6.1 yields the associations between the labels used for
i ame servers in Table 5.1 and the actual Grapevine server names.

As in previous analyses, clients are identified by the local network on which they reside. Table 6.6
indicates the registry with which clients on a particular local network axe affiliated, as shown in
Figure 6.1, as well as the main server for each cli nt NSmain. The authoritative name servers for
each registry were presented in an earlier paper by Michael Schroeder et al.. and are reproduced in a
condensed form in Table 6.7. The authoritie.i are claasified as being either local, that ia, in the locale
of the registry's mrmbers, or remote. This table, along with Table 5.1, determines values for Cm,n.,k ■

''■' '•'f- V. ^'.

rwww^wwiv^^mwTrw\nr\rw^wvwxfw^ TT\mi»w< PWTV ^.T -.-' ** ■ nn »wn ^^ ^.Tj

^3

79

client 1 registry main server
1 PA C (Cabernet)
2 PA D (Zinfandel)
3 ES F (Mission)

1 4 ES H (Merlot) ,
5 Pasa K (PinotNoir)
6 RX L (GreeneKing)
7 XRCC M (deChaunac) !
8 Sthq N (Aurora) i
9 Wbst N (Aurora)
10 Henr 0 (Muscat)
11 Henr P (Catawba)
12 Dlos Q (Barbera)

Table 6.6: Associations between clients, registries, and main servers.

Storage sites
registry local remote

PA 1 A,C,D,E i.Q
ES F,G,H,I,J D,0

Wbst N G,P,Q |
Henr 0,P G
Dlos Q N.G
Pasa K J,N !
Sthq — A,N,0 j
RX L K,N

Table 6.7: Authoritative servers for Grapevine registries.

i •>...••. i^j"» A ^ iT^i» i. «". «"- B'. f.'. »"-JI'- JJ «s.. J •-> -

v "WP TP,~F ■/• rw ■

80

rw rwjwj^nrf. T^rrwy TJ f«-;*-^ *vfgytfy^*?%T"s^,T"s^'rf■!w^^Tl:TIni■■ ■: ■^- Trv»¥ f» f» i?" >«^ '.»" "jr'.sr r»

^

Lookup cost for name in registry
client PA ES Wbst Henr Dlos Pasa Sthq Rx

1 13 75 130 130 130 185 20 388
2 13 13 75 75 75 130 75 333
3 75 13 20 20 20 75 130 388 1
4 20 13 75 75 75 20 185 333
5 333 333 388 388 388 13 498 13
6 646 646 333 646 333 333 333 13
7 646 646 333 646 333 333 333 333
8 959 959 326 959 326 326 326 326
9 333 333 13 333 13 13 13 13
10 646 13 333 13 333 333 13 333
11 646 646 13 13 333 333 333 333
12 1 13 333 13 333 13 333 333 333

Table 6.8: Costi of acceiting individual Grapevine registries.

To enable comparisons with computations of name server operation costs presented in Chapter 5,
the database access coat, d,, is once again taken tn be 6 times the cost of local network communication.
The chosen cost of database operations has no significance on the romparisons performed in this
section, however, since the number of database accesses in Grapevine is fixed. Locality reduces the
expected lookup cost solely by reducing communication.

6.4.2 The benefits of Grapevine's locality

The cost of a r^me service lookup for a uame in a given registry, baaed on the actual Grapevine
configuration, is presented in Table 6.8 for all clients and major registries. These lookup costs were
computed from Equation 6.23, along with the configuration data in Tables 6.6 and 6.7. They are
independent of the clients' particular reference patterns.

Given a client's lookup costs for various registries. Equation 6.22 provides the client's overall
expected lookup cost, an average of the lookup costs for individual registries weighted by their
frequency of reference. Teile 6.9 pr^ents the expected lookup costs for all clients using both a
uniform reference behavior and Grapevine's observed reference localities. For uniform referencing,
12.5% of the lookups are performed for each registry, that is, the expected overall cost is simply an
average of the lookup costs fof ill registries. Table 6.1 provided the percentages of references for
Grapevine's observed localities: a specific client's reference pattern was determined by its registry
affiliation given in Table 6.6. An expected lookup cost was not computed for client #7 since the
referencing behavior of registry "XRCC", which haa less than 100 members, is unknown.

The third column of the Table 6.9 indicates the ratio of Grapevine's costs to uniform reference
costs. For the first five clients, locality of reference resiilts in over a 50% improvement in th.? overall
expected lookup costs. Ghent #5'3 cost is particularly sensitive to its locality since the cost of
accessing 6 of the 7 remote registries is about 30 times that of lockups to the local registry. Ghent
#8 observed only a 20% improvement in performance despite its 70% access rate to its own registry:
its problem lies in the lack of a local name server and the large expensive of accessing the "PA" and
"ES" registries.

Ghent #9 loses big with its actual referencing behavior even though it exhibits more locality than
client #12, which experiences a moderate improvement over uniform referencing. Table 6.8 shows
that Ghent #9 can quickly access registries -Dlos", "Pasa", "Sthq", and "Rx"; unfortunately, these
are referenced only 8% of the time collectively, while "PA" and "ES" receive 54% of Ghent #9 3

• W

-V

•i
.1

'ji "Ji'.Ji ',.« 'J" 'j. "jll J-I-l ii? . JM -J *-*"-»-*-« '-Jf -E ■> -*■ ^» -»
■ ^ 1 - •« .
-'J '-" '-J- L "^ -*-« f-«TJ»t-< LAS

F>Ul^^^A^^'0'H!y^.'f'ilJ|L^'<y <:I,^*|L'4.* 4 r* *""' "^^^T »T"*'".^ , VJ,,W,.HJ.M#1i| , , ^^ -

81

Reference pattern ratio
{ client uniform Grapevine G/u

1 133.88 48.61 .36
2 98.62 29.89 .30
3 92.62 41.92 .45
4 99.50 34.77 .35
5 294.25 134.86 .46
6 410.38 379.89 .93
7 450.38 — —
8 563.38 449.34 .80
9 133.00 214.47 1.61
10 252.12 206.34 82
U 331.25 348.31 1.05
12 213.00 169.67 .80 [

Table 6.9: Expected lookup costs for Grapevine clients.

lookup requests.

The two sets of clients, #10 and #11, both belong to the "Henr" registry, have the same refer-
encing patterns, and are in identical positions in Grapevine's topology, as indicated in Figure 5.2.
Nevertheless, one gains from its referencing behavior while the other loses. The major reason is
that Client #10's main name server, Muscat, scores a copy of its most frequently referenced registry,
"ES". Clients on network #11 must send lookup requests for this registry to Muscat over two slow
communication lines.

6.4.3 The benefits of remote authorities

The expected cost of performing a name service lookup is highly dependent on what queries can be
answered locally and which ones must be transmitted over slow communication lines. The previous
section illustrated that simply storing a copy of a remote registry at a local server can substantially
reduce a client's overall expected lookup cost. If Grapevine servers were only authoritative for a
single registry, the registry governing their local area, then one would expect much higher lookup
costs.

Table 6.10 is similar to Tuble 6.9 except that the cost for querying names in various registries
are computed as if only local authorities existed for each registry, the authorities given in the "local"
column of Table 6.7; name server "N", Aurora, is taken to be the authority for the "Sthq" registry.
In this case, the overall expected lookup costs for uniform reference patterns always exceed those for
the measured localities in Grapevine. Since the only cheaply accessed registry is the requestor's own
registry, the improvements with Grapevine's referencing behavior stems from a client's higher than
average frequency of references i, the local registry.

6.4.4 Comparisons along two dimensions

The lookup costs presented in Tables 6.9 and 6.10 are reproduced in the form of a bar graph in
Figure 6.3. For each client four overall expected lookup costs have been compiled; the four results
derive from two independent factors that affect the cost of name service querit_. clients' referencing
behavior and the assignment of authority over database objects. Th? reference patterns for each client
are either assumed to be uniform or else set to be those exhibited by Grapevine"s mail traffic. The
two choices for configuring the name aervice are to assign local servers authority for local registries

Ü. '■f .'.'W-J-V- .'-'ife.V.V- ^-V-'^-V.V..»'..^. f-i t*Sj

\v\m^KvwVI^ ^v'^wy^i^f *y »^ *."''*J<|"*^^JV A4.'»'.Wi A» ^'rvij'^wit'c Jifij1*^ n^*^-,*'! »p'.j'i'y vn, 'i n^-^y—i ■.! Hii^ ; i. f/v.1 HF ▼ ".' v v#"JIPJ1 s» v

84

environments grow in vmanticipated ways, resulting in performance irregularities. The utility of the
performance model stems from its ability to detect such anomalies.

-^ '- ■.•.-% -i«"^. Litl^iAjL Kf, a« t t^ 'm' ^. ■ %SlL*, *J. '-'*. <!Jt ^V"; ^-i *_" «■-"i t-'".^" A. l'*_H*^ *,'« Kx "CMJL* ^ fm «« it*'. ^'-■'- «%- %"« V- KL •"'- tJ.

TT-^ 1. * t, * l'^'.'*'.^'~'T"" T^T^n^P* l"''V1^' IWg^g^l^^ V« f» I'V ■.•'ST^'-vJ'.■"-• l-1^ ■'• y '.''i^'.- 'fi ' i ^W i'J'S i.1"i.vi ■

85

Chapter 7

Caching Name Server Data

Performance enhancements result from clients' acquiring local caches of name service
data. Problems with maintaining strong cache consistency can be alleviated by treating
cached information as hints. A new approach to managing caches of hints suggests main-
taining a minimum level of cache accuracy, rather than maximizing the cache hit ratio,
in order to guarantee performance improvements. The desired accuracy should be based
on the ratio of lookup costs to the costs of detecting and recovering from invalid cache
entries. Estimates of the accuracy of cache entries are computed from various types of
metadata, such as the expected lifetime of an attribute tuple and its time since birth.
Cache managers either employ revalidation procedures to restore entries whose accuracy
falls below the desired threshold or simply discard the bad data. Replacement policies
for caches with size constraints should consider the estimated accuracy of cache entries
as well as their likelihood of future reference.

7.1 Cache Management

7.1.1 Caching for performance enhancements

Performing a name service operation may involve several interactions with name servers that
are dispersed throughout a large internet environment. The high cost of resolving an object's name,
however, can be substantially reduced if clients maintain local caches of recently acquired name server
data that is likely to be reused in the future. A cache is an unauthoritative repository of object
attributes. By consulting the cache before querying the name service, the initial cost of utilizing the
name service can be amortized over several object references, assuming the cost of accessing cached
data is significantly lower than that of normal query operations.

In Chapter 5, the expected cost of a name server query, E(LU), is formulated in Equation 5.1
as a function of the client's access patterns and the cost of retrieving information from a particular
database partition. With caching, the cost becomes

E(C)=Ccaelxe + Pm,„E(Lu) (7.24)

where Pm,s, is the probability that the desired information does not currently reside in the cache
and Ccacht is 'he cost of accessing the cache. Observe that E(C) < E(LU) if the cache hit ratio,
1-Pmij,, is greater than CcachelE{LU). Thus, if the cache access cost is much less than the expected
cost of a name server query, then caching results in aignificaiit gains, even for low cache hit ration.

Two main factors contribute to a cache's low access time in comparison with a typical name server
query. First, since the cached data is stored physically close to the ussrs of that data, the large delays

1 ,. H ^ ■. .t ^JR ,.». AL ■-«'•><« »ti-^S..-ft ^*-fc . . - w • . ft > 9 . IJ-I -.tikft «JS . .' w * .. » .->. h. ^ .n * _ • - • ft * » tftkftiLftX.CftJI.A.EftA ^\ ft j ftk .ft

' IJl".»fJI-™ «1
.']

•B
86 S

in conversing with dista U name servers are avoided. Second, the expensive name resolution process JOJJ
for locating an authoritative server for the named object in question is unnecessary. SS

Caches are unauthoritative in that they are used for performance enhancement only; the main- A Pi
tainer of a cache may store or discard cached object attributes freely without disrupting the basic ..^
name service. Caches can reside in fast volatile storage since the loss of cached data, in the event of •',>
a processor crash for instance, does not adversely affect the functional operation of the distributed '•%
name service.

7.1.2 Hint» vs. strong consistency

If the name service database were immutable so that no existing database entries were ever /-'>
modified, then caching data in a distributed environment could accrue all of the performance benefits '.-/
and add no complexity to the clients. Realistically, the information about an object may change /£%
under normal operating conditions. For instance, an object may migrate to a new machine in order A M|
to balance the loads across machines or because its original processor crashed; in this case, the ^..^
"InternetAddress" attribute maintained by the name service for the object should be updated to \\
reflect its new location. •"/•

j. -,

One approach to maii.taining cache consistency would be for the name servers to inform caches !v,'
whenever data is updated. However, this requires elaborate cooperation between servers and clients '.".'j
and generates lots of extraneous messages. Expecting a name server to know about all clients that 9 HI
may have cached data handed out by that server for very large internet environments does not seem
feasible. It would be difficult for the servers to maintain Jdable records of what information was
cached by who. Such information needs to be maintained in stable storage so that it survives server
crashes and might consume unreasonable amounts of storage space. Because of this difficulty in
maintaining the validity of cached data, distributed systems desi^iers often avoid caching.

An alternative approach is to treat the cached data as hints, which arc =ct assumed tc be com-
pletely accurate. Clients of a cache, must be prepared to deal with updates to the name service
database that do not automatically propagate to the cache. The detection of inaccurate cache entries
and subsequent recovery must be done by the applications that use the data in an application-
specific way. Application level recovery is necessary since the appropriate action to take depends on
the semantics of the data and how it is being used by the name service client.

Caches of hints have been advocated in the past [Clark 82] [Lampson 831. The R* catalog manager
[Lindsay 80] and the Grapevine mail service [Birrell et al. 82] both make extensive use of hints. ',-'/,
Generally, hints about the location and availability of various services registered with a name service
can be verified when clients attempt to make ase of these services. .'■

7.1.3 Cache accuracy 'SB

At any given point in time, each cache entry is either invalid or valid depending on whether or 1>
not the corresponding name service database entry has been modified unbeknownst to the cache ^•.\
manager. The aceuroey level of a cache is defined to be the percentage of cache entries that are ,'.
currently valid. This static measure of accuracy can be obtained by comparing a snapshot of a given
cache with the name service database. • |5

The percentage of cache lookups that return valid data to a client determines the observed accuracy . -'.
level. This is a more dynamic notion of cache accuracy, but is difficult to quantify since it depends *./'
on the access patterns of clients over time. The observed accuracy level varies from client to client, '-/^
whereas the static cache accuracy level remains independent of client behavior.

Ai with most caches, the hit ratio denot«* the percentage of lookup requests that can be answered
by cached data [Smith 82], regardless of the data's accuracy. With caches of hints, clients are perhaps
more interested in the accurate-hit rath obtained by multiplying the hit ratio by the accuracy level.

•*

/

.">.-

I -jinTr:-w-i/\ ■T^A^^.^,."s^r'^.^ry^^,■-»v▼T.',' vvunMUvy. i"» v ,-.,-r'."f rmwr v^-r' s* r» rw rn v» rr r» rn »-■ F-» rn in» r« F* WK WW WW sr» ITF w-» »r». IT» ITF r * IT» r» smr» «""".sr^w

Both of these measures are highly dependent on client reference patterns and the cache management
strategy.

87

:K

7.1.4 A new approach to cache management

This chapter concentrates on techniques for managing cached data that may not be completely
accurate, caches of hints. Because of the distributed nature of the system and the size of the en-
vironment, only the name servers that have authority for a piece of data are automatically notified
when that data is modified. The existence of caches, which lie outside of the realm of the name
service, is not known by the authoritative name servers. The individual applications or hosts that
choose to cache name server data must uniiateral/y maintain the validity of that data since they do
not participate in the usual name service maintenance operations.

The performance benefits obtained from a cache depend on the cost of accessing the cache, Ceach«i
the cost of detecting invalid cache entries for various client applications and types of data, Cdtuet, tbe
cost of accessing the name service, Css — ^(^u) obtained from Chapter 5, the update activity to
the name service database, clients' referencing behavior, and the way in which the cache is managed.
Suppose that the accuracy of the cache is expressed by the probability Pcorreet and the hit ratio is
given by PM; *he expected cost of a name service query becomes

E(C) = Ceaeht + (1 - PKU)CNS + (P*«)0 " Ptorrtet]{Cdtttct + CNs) (7.25)

where Cdtua depends on the particular application. The cache management algorithm must deter-
mine what information should be maintained in the cache and what should be discarded so as to
maximue the benefit of the cache to its clients.

Current cache memories for modem computer systems attempt to maximize the hit ratio for a
fixed-size cache by utilizing intelligent cache replacement algorithms [Smith 82j. Many distributed
systems that cache hints, such as Grapevine or R*, allow the size of the cache to grow indefinitely
(by storing it oa secondary storage); entries are only purged from the cache when detected invalid.
Essentially, these systems also maximize the cache hit ratio. However, this simple scheme, which
ignores the ca he accuracy, may not be optimal, and may perform quite badly for data that changes
frequently.

As a demonstration of why maximizing the hit ratio, or even the accurate-hit ratio, is suboptimal,
suppose one cache experiences a hit ratio of P^n while a second maintains a slightly higher hit ratio
of Ph,t + f Asstime that both caches have the same accuracy level (though, in reality, the accuracy
level is probably a decreasing function of the hit ratio ior a variable-sir.e cache). The client observing
the higher hit ratio gets a lower lookup cost if

E(C7) < £(0

=> -tCNS +«11 - Pear ect){Cittec, + C.vs) < 0

=:> -CNS + (1 - PcorrectjCdettet + U - Pcorrtel)CNS < 0

^ PcOTTtCtCsS
=^ Wefecf < . _ p •

* * correct

In other wordi, increasiing the hit ratio increases the amount of invalid data returned to a client as
well as iropioving the ciccurate-hit ratio. Thus, whether benefits are obtaineu from higher hit ratios
depends on the cost o:r recovering from invalid data relativs to the cost of straight name service
lookups.

Optimal cache management involves maintaining a level of cache accuracy and a hit ratio that
maximizes the benefit oi' the cache to its clients. Optimizing Equation 7.25, however, is difficult since
the two variables, P^n and Pcorreet, are not independent. For a variable-size cache in vhich only
the most accurt-te information is retained, they are related through the size of the cache: a higher

'"-'.

•"•■v%i".v>ijO-' >.■-■_ ^.-.AXA^5
-.»V ^«_ *_'__ ^a_

88

accuracy results in a smaller cache which results in a smaller hit ratio; unfortunately, the relation
can not be easily quantified.

This chapter proposes a new approach to caching hints that guarantees a performance benefit from
the cache, but does not attempt to derive an optimal management strategy. The agent managing
the cache singly maintains a Tninimiim level of cache accuracy. Initially, the sire of the r> -is
limited only by the desired accuracy level. The minimum level of cache accuracy can be derives oy
observing that, at the very least, the cost incurred by using cached data should be less than the cost
of retrieving the data directly from the name service. That is, E(C) should be less than CVs,

CNS > Ccch, + (1 - PKit)CNS + {Pkit)(l - Pcorr,ct)(Cdtuet + CNs)

Assuming the cost of accessing the cache is negligible compared to the cost of u name service lookup,
Ccath* < Cps

=> CsS - (1 - Phit)CsS > Pkit(i - Peorrtet)(Cd€Uct + CVs)

=> PhilCyS > PhitH ~ Pcorr*et)(Cd,ttet + C.vs)

— CyS ^ 1 _ P > l — re3rrttt
Cdtttet + CNS

CMS
 'r* * correct ^ 1 ""

Cdtttct + CMS

Cdcttct
- correct ^ f-, ^

^detect + 0^5

This inequality therefore gives a lower bound for the desired cache accuracy. Generally speaking,
the level of accuracy should be based on the cost of recovering from invalid cache data to achieve
a successful cache management policy. If the detection cost is substantial, then the cache manager
should make an effort to keep a high level of cache accuracy.

In practice, the actual static cache accuracy can not be measured since the cache manager is
unaware of the state of the name service database. Instead, Section 7.4 presents techniques for
estimating the accuracy of particular cache entries based on information about the lifetime of named
objects. To maintain the desired accuracy level, cached data t^at is sospected of being invalid should
be either purged or revalidated1. Section 7.3 examines general techniques for revalidation of cache
entries. The next section discusses mechanisms for using and caching name service data in more
detail.

7.2 Basics of Caching Hints

7.2.1 The cache manager

The agent responsible for maintaining the data stored in a cache is called the cache manager.
The cache manager decides what data to keep in the cache and what data to throw away. It also
responds to cache lookup requests initiated by users of the cache. Usually, name agents fill the role
of cache manager, or at least call directly on cache managers as in Figure 7.1. The client base of
a name agent, whether each name agent serves a single client or several clients, affects the caching
strategy.

A per-proeeat caching scheme, in which name server clients maintain individual caches, gives each
name server client maximum control over what information it wants to retain for future use. However,

'In some cases, the cache accuracy that naturally results Vom maximizing the hit ratio may be high enough that

cache entries are detected invalid and purged before they ever become suspicious. Experimental studies of existing

environments are needed to determine how often these cases arise in practice.

■ %»^r». *\ ^■,*\ •'"t■. *• *\ •% '".. ■". '*■ •". *'i '■■''» ■■\ "^ *". ■«''« V- % m. ■'*« ^\ "f. ■"'» *'. ■f.,'".. •*/•''' '»"-V "v."'-^'.■*"■'■ ,' ,' "w* ■*.■''.•, *

ffVrWZWTWJWlW&WTWf '■-.■r-v- ■•■•■r'-,-*rw-'r~m-*v--jfy*\.irv^jr< VT^m ,T mzwvwmwi ^n ,r.w''

client client

name cujem |

cacKe
\

name
server

client

name
agent

cache
mqr

name
server

name
server

Figure 7.1: Cache managers and name agents.

89

ttijT.teltä-**: 1 ■«■ * *^ "~* * < *- *- * '. «. ^ . A - ». ^ x « a _ s _ ji** ^i« T^_. «'_ ..i*,. J*^ i ^i^i^j-^- .•>y*.''s,^A'Js-s''A'

rgi^~f^,r jwvy"^."a'jy..' rjw^.'frrirrrrvwiryv^ TjJT^^t^F^TH^^^f^^^iyg^E^y^^TyyTgr^r^^ " ^ ' ■ ' ~ v "* ^»JV, ■J»7.K7Jr».>r».W7->'^ V1."^

90

having each process be the cache manager for its private cache prohibits sharing of information among
processes.

To encourage sharing, it may be better to utilize a per-proeeisor cache that can be accessed by
all processes running on a particular machine. Due to geographical localities of interest, name server
data of interest to one client may likely be of interest to another client on the same machine. A per-
processor cache could eliminate duplicate name server queries issued by different clients concerning
the same object.

The same arguments apply to a per-sxte cache, serving clients connected by a local area network.
Communication over high-speed local networks makes such an arrangement feasible since their band-
width may be comparable to that of a local disk. Moreover, as demonstrated in the Chapter 5. the
cost of communication over a local network may be a few orders of magnitude less than the cost of
reso'.ving names in a large environment.

One can also imagine schemes in which the name servers themselves cache data returned by other
servers. This cached d>tta would then be available to all name server clients, but primarily of use to
clients in the proximity of the particular server. Note that a name server assumes no responsibility
or authority for data resident in a local cache. Its role as a cache manager remains distinct from its
role as a name server; the first is strictly for performance reasons, while the second is a critical part
of the distributed name service.

7.2.2 A cache interface

A cache can be thought of as a locally stored database object,

cache: Database.DatabaseObject;

except a cache exists outside of the distributed name service. A cache manager can utilise the
database facilities proposed in Chapter 3 for storing cached data. Figure 7.2 gives a very basic
interface for cache clients.

A cache read may be just a local database query, or the cache manager may attempt to check
the accurscy of the cache data before returning it to the client, as dwusscd in Section 7.2.5. Cache
writes most likely look for the existence of a cache entry with the same name and attribute value and
change its value rather than naively adding a new entry to the cache. Thus, cache writes may result
in either modifications or additions to the cache database. The Purge operation removes entries
from the cache. As with other databases, the contents of the cache can also be enumerated. Lastly,
clients, upon retrieving data from a local cache and discovering it invalid, should provide feedback
to the cache manager by issuing complaints. The cache manager might choose to remove data that
is known to be bad from the cache so that other clients do not nrminter the same bad data.

7.2.3 Obtaining cached data

Cached data is generally obtained indirectly from name service queries executed on behalf of
clients by name agents. For instance, the query

value ♦— NS.Lookup[name. attribute);

may result in the tuple [narie.attribute.value] being retained in the cache for future use. Name agents
might simply write all data they receive from the name service to their cache, or some criteria for
deciding when to cache name server data might be desirable. Name agents also receive data that can
be cached from clients performing name service updates.

?J£<&i&C>tt&1tä^

■^^X' ^«X^^.WM »-w.«"; ir. »"4 *■. nr,'«-; (r.-wi-s-,-»■;»--»-J WJ

91

Cache: DEFINITIONS IMPORTS NS, Database = BEGIN

Read: PROCEDURE[nanie: NS.Name, attribute: NS.AttributeType|
RETURNS[Database.AttributeTuple);

Write: PROCEDURE(tuple: Database.AttributeTuple];

Purge: PROCEDUREJDatabase.AttributeTuple];

Enumerate: PROCEDURE[next: Database. Tuple ID]
RETURNS[tuple: Database.AttributeTuplp, next: Database.TuplelDj;

Complain: PROCEDURE[Database.AttributeTuple];
END.

Figure 7.2: Cache interface.

In addition, cache managers may decide to actively query name servers to stock their caches. This
prefetching would require cache managers to have some idea in advance of what will be desired by
clients. Under certain circumstances this knowledge could come from observing past requests issued
by the client along with iome knowledge of the semantics of those requests. There may be a large
correlation between requests for different attributes of a given object. For instance, if a client aaks
the name service for the host on which a given mailbox resides, then that client will likely issue a
second request for the address of the mailbox's host. Thus, the cache manager may wish to pre/etch
the host's address attribute.

Since name service clients are responsible for detecting invalid cache data, the cache manager
should not store data that its clients are not capable of validating at the application level. If a client
is not prepared to recover from invalid data, then it should not make use of the cache. In certain
cases, however, the type of tl» data may make it inherently difficult to detect whether the data
becomes outdated while sitting in the cache. For instance, if a member is added to a distribution
list that has been cached, a person sending mail to that distribution list might not be able to tell
that the cached copy is incomplete. In order to know what data can be cached and what cannot, the
cache manager must know something about the semantics of the data. This information could be
supplied to the name service when the attributes for an object are registered and returned to name
agents with any queries concerning the named object. For example, an entry in the name service
database could be flagged with a THIS DATA NOT SUITABLE FOR CACHING" warning.

7.2.4 Using cached data

A cache manager provides a subset of the name service database that can be accessed cheaply by
clients indirectly through name agents. Name service clients need not even be aware of the existence
of a cache as long as they treat all name service data aa hints; a client's name agent's interface need
not change, though, as described in Section 7.6.2. some interface changes may be desirable P r dealing
with the cache.

The basic name agent lookup routine for dealing with caches might be implemented as follows:

a^i -».-*■■■* -^ : -•j'.g-v-V-V-v-V.v. /^ >'/:*?<&*:/: i.-«.-^..?

.".»■'j*.'j-fj','>fj-.-j"^yT'.^_a^'y^v^ir»yitf^v'wv^-vwynnRi''%v»-fc"Wi.^i^iVS tfft^.'jn.^u^

92

Lookup: PROCEDUREfniane: Name, attribute: AttributeType]
RETURNS (Attribute Value) = BEGIN

value: AttributeValue;
cachedtuple: Databaae.AttributeTuple;
cachedtuple ♦— Carhe.Read[naine, attribute];
IF cachedtuple.value ■ NILTHEN

value «— NS.Lookup[name, attribute] AT mainServerAddiess
ELSE

value ♦— cachedtuple.value;
RETURN [value];
END;

When presented with a request to lookup a given name, the name agent first consults its local cache
manager and returns the desired data if available; if the data is not found in the cache, then the
query is forwarded to an available name server and the usual name resolution process takes place.

7.2.5 Policies for managing cached data

The basic function of a cache manager is deciding when data should be purged from the cache
in order to maintain a certain level of cache accuracy. Generally, data that has been cached should
remain in the cache until the cache entry is known to be invalid or suspected of being invalid. Cached
data is considered tiupieiout when the probability that the data is valid, as estimated by the cache
manager, falls below the desired level of accuracy of the cache. A cache manager must perform some
action when data becomes suspect, such as purging or revalidating the suspicious cache data.

A particular cache management policy can be characterized by when data is checked for suspicion
and what action is taken on suspicious data. Three approaches to discovering suspicious data can be
classified as:

PdMtive. a cache entry becomes suspect when a name service client issues a complaint concerning
the data.

OnDemand. the accuracy of a cache entry is checked when a name service client expresses an interest
in that entry.

Periodic, the accuracy of cache entries is checked regularly.

In addition, three actions could be taken on suspicious data:

Purge, auspicious cache entries are simply deleted from the cache.

Refreth. new values for suspicious ca,:he entries are obtained from an authoritative name server.

Revalidate. suspicious cache entries are checked against an authority for their validity.

One obtains a policy for cache management by combining an approach to discovering suspicious
data with an action to be performed on such data. In practice, several policies may be utilized
concurrently.

Passive cache management relies on clients of the cache providing feedback to the cache manager,
via the Cache.Complain routine, when data becomes suspicious. Generally, feedback from a client
comes after the client has attempted to use the data and discovered it invalid. For example, the
Grapevine and R* systems employ a Pastive'Purge caching policy in which the detection of invalid
cache entries cause them to be flushed. A Passive-Refresh policy might be useful in all cases since a
client is likely to reissue a particular name service lookup after complaining about the data initially
returned; refreshing the data represents a type of prefetching. Passive-Revaiidate would only be used
if the cache manager does not trust clients" complaints.

F^jtry.-^.wyfwvBrjvtfvwmrj ^ y.rr^^r^rir^ri^ ^^n*,** ^wsr*r

Active enche management, in which a cache manager actively monitors the cache accuracy, is
needed in order to provide the level of accuracy desired by a cache's clients: passive cache management
policies are not sufficient to guarantee a particular level of cache accuracy. OnDemand policies check
the accuracy of a cache entry when the client issues a query that can be answered with the cached
data. If the cache entry's estimated accuracy is too low, then the cached data can not be returned
unless it is refreshed or revalidated. A policy based on periodic inspection of cache entries allows
entries that are never referenced to be discovered, unlike Pattive or OnOemani policies. A Pertodxc-
Purge policy, for instance, maintains the desired level of cache accuracy by discarding suspicious
entries.

Periodie-Refreth or Periodic-Revalidate might be especially beneficial when free computing cycles
exist on the cache manager's host; the revalidation would essentially be free in this case, ignoring the
added network load induced by the action. For example, personal workstations are often left idle for
short periods of time such as during lunch, coffee breaks, or phone calls. A machine might also have
excess computing power during off hours. These times could be used by a cache manager to bring
cache entries up-to-date.

Suppose a procedure exists to estimate the accuracy of a particular cache entry, as presented in
Section 7.4,

Accuracy Level: TYPE = INTEGER [0.. 100];

Accuracy: PROCEDURE[tuple: Database.AttributeTuple] RETURNS[AecuiacyLevelj;

as well as a general technique for revalidating cache entries, auch as the ones described in Section 7.3,

Validate: PROCEDURE!iuple: Database.AttributeTuple] RETURNS[BOOLEAN|;

A cache management algorithm based on either Periodic-Revalidate or Periodic-Purge might be em-
bodied as:

ManageCache: PROCEDURE[desiredAccuracy: AccuracyLevel] = BEGIN
interval: Time «— 10; -- some interval of time
tuple: Database.AttributeTuple;
next: Database.TuplelD;
valid: BOOLEAN;
DO -- forever

Sleep[interval];
next <— NIL;
DO

[tuple, next] *- Cache.Enumerate[next];
IF tuple = NIL THEN EXIT:
IF Accuracy[tuple] < desiredAccuracy THEN BEGIN

IF activeRevalidation THEN BEGIN
valid •— Va]idate[tuplej;
IF valid THEN LOOP;
END

Cache.Purge[tuple];
END:

ENDLOOP;
ENDLOOP;

END;

93

"•-',"■-*''>-<C;.'*a.''*j ■"«-^'ifci'ffr-*."»-''!'«-^«. fM

i" vw> "V »■^"■.»■r''

94

The parameter of this routine specifies the desired cache accuracy level.

The proper cache maintenance policies to adopt depend upon the cost of executing them versus
the expected benefit. All cache managers should certainly respond to clients' complaints. In general,
the coat of Ptnodie and OnDtmand policies is difficult to quantify since one must consider the
amount of spare computing cycles and other nebulous factors. Purging cache entries is quite cheap,
but the cost-benefit of other approaches depends heavily on the relative cost of refresh or revalidation
compared to the cost of detecting invalid data at the client level and recovering from such data. The
next section discusses general techniques for refreshing and revalidating cache entries and speculates
on the viability of policies employing these techniques.

7.3 Refresh/Revalidation Techniques

7.3.1 Requery strategies

The simplest way to refresh a cached attribute tuple is to reissue the query that produced the
cached entry. If the requery is as costly as the original query, however, then Refresh policies are not
cost effective in most situations. Fortunately, the cost of a second query to the name servic« can be
substantially reduced by avoiding the name resolution mechanisms. Given the architecture developed
in previous chapters, a cache manager need only keep, along with the cached data, an indication of
the authoritative name server that handed out the data; subsequent queries for this data could then
be sent directly to the server that has authority for the data. Name service configuration data is safe
to cache since it rarely changes, and outdated configuration data can be readily detected. The cost
of refreshing a cache entry has thus been reduced to the cost of querying a single name server.

The cost of requerying attributes of named objects can possibly be reduced further by caching
information, such as a low level pointer into the database, that enables the server's query processor to
locate the data faster. The CSNET Name Server, for instance, assigns unique ^registration IDs" to
all database entries for mail recipients [Solomon et at. 82). Even though the database is maintained
in a centralized fashion, looking up entries in the CSNET database by registration ID should be much
faster than the usual keyword-matching lookups. Nevertheless, local performance enhancements of
this sort may have a small net effect on response times if communication costs dominate.

OnDtmand-Refresh schemes typically check the accuracy of the data and refresh suspicious cache
entries before returning to the calling client. With such a policy, name service clients that are not
equipped to detect invalid data can request 100% accuracy, in which case refreshes are performed for
all client queries. Even though the cached attribute values are never used, the cache contains hints
that enable name service lookups to be executed less costly than if the cache did not exist.

As an alternative approach to On Demand-Refresh, a cache manager could return cache data to
clients regardless of its estimated accuracy and immediately attempt to refresh suspicious data while
the client attempts to use the cached data. For data that is suspicious but actually valid, the client
obtains faster response times than if it had to wait for the data to be refreshed. For invalid data,
the valid data may already be retrieved from an authorita'r e name server by the time the client
complains. Of course, the client wastes more cycles than if it jimply waited for valid data in the first
place.

A cache manager could also actively try to refresh cache entries by requerying name servers inde-
pendent of client requests. Periodic-Refresh. Li general, such a scheme would not be as cost effective
as OnDemand-Refresh unless the cache manager had some knowledge of future client requests.

7.3.2 Timestamps

Techniques for revalidating cache entries, guaranteeing that *he value associated with the attribute
of the named object has not been modified since the data was cached, can be based on the use of

v.v. r'1 X","l vlv^v." ^/j&<:/^^^^'^'2^^^:^^Lj^L/'-y:KS^

T"",- •> " > '> "« ' I \, • ■ T ^i I '. i-f T '.V ^ - -N ■ S V •f":

95

timettampB or v«r«ton numier«. A time stamp is & .«trictly increasing indication of when the last update
was made to a part of the database. Every modification to a name service database item should
increase the value of the timestamp associated with that tuple. Timestamps can be conveniently
obtained from the time of a database update. A timestamp that is a simple counter is often called a
version number since it indicates how many times the data has been modified.

If timestamps are maintained for name service information and handed out along with the response
to a name service query, then the timestamp information may be stored by a cache manager and
associated with each cache entry. Revalidating a cache entry is simply a matter of comparing its
timestamp with one returned from an authoritative server. If the timestamps agree, then the cache
entry is guaranteed to be valid; if they differ, the cached data may or may not be valid depending on
the granularity of the timestamp.

The granularity of a timestamp represents how much of the database is covered by the timestamp.
It could range from one timestamp for the complete database to a timestamp per database attribute
tuple. Another reasonable alternative would be a timestamp per named object.

The finest granularity is achieved by maintaining one timestamp per name service database tuple.
In this case, each cache entry has an individual timestamp. For such fine granularity timestamps.
the cost of an active Revalxdate policy is almoat the same as that of a r^query algorithm since a namt
service query is necessary to retrieve the current timestamp.

The R* catalog managers maintain a version number per catalog entry, but they do not actively
revalidate cached entries (Lindsay 80]. The version numbers are used for application-level recovery by
query processors, client» of the catalog. The Grapevine registratiun service also keeps a timestamp per
database entry [Birrell ct al. 82! Although the Grapevine mail service does not actively revalidate
its caches, other clients could easily do so since Grapevine provides a "CheckStamp" routine that
saiiM a name and a timestamp and returns "poChange-' if the given timestamp is valid [Birrell 83}.

Benefits might be obtained with a timestamp mechanism if larger granularity timestamps <uv
used. For instance, if a single timestamp is uaed for all of the attributes associated with a given
object, then all cache entries for an object can be revalidated, or invalidated, with a single timestamp
comparison. Whenever a name service update is performed, all cache data that is covered by the
same timestamp as the modified data is considered invalid regardless of whether the data has actually
been modified. Thus, large granularity timestamps result in pessimistic revalidation algorithms.

In the extreme, where a single timestamp exists for the complete name service database, the
timestamp can be returned with all name service queries. The whole cache can then be revalidated
with a single comparison whenever a cache miss causes a name service lookup. An inexpensive scheme
of this sort might perform quite well if the name service database did not change very often. On the
other hand, if updates occurred with some regularity, then the cache would almost always be empty.

The Pup name lookup server, for example, provides a single timestamp for its complete database
[Boggs 83]. The timestamp is used to maintain consistency among the various copies of the database.
Whenever updates are made, the new timestamp is broadcast, and out-of-date servers request new
versions of the database. Sites in this environment could manage their caches by listening for broad-
cast notices advertising new timestamps.

Ideally, the granularity of a timestamp should be adjusted according to the upd^ a frequency of
the data. The benefit of revalidating several cache entries simultaneously must be traded off against
the probability of invalidating perfectly good data.

7.3.3 User-supplied revalidation procedures

The use of caches that are not completely accurate relies on applications being able to detect
and recover from invalid cache data. Typically the methods used by name service cUents to check
the validity of data vary substantially according to the type of the data and how it is used by the
applications, whereas the techniques discussed thus far for refreshing and revalidating cache entries

'i'v. V <\^vVv.> "»Ni"« ^i^VW US, vJu^U-l^V ^ -V A 'J%.\ -* ^-*. t * 1. •

f-rTrT'-r~rT^~r^,tjfrr-wrr^"' ' ',L -"■ '^-—^^-T' r-TT*T'T'. ^."■V^". '^J^*'^,^.T-^.V.'.'''','rVr'.c"^Flr
t.'
ir<."

t;

96

do not depend on the type or semantics of the data be validated.

Suppose application level rtvalidation procedure» are formalized to the point that detecting bad
data is accomplished by calling a routine which returns an indication of the validity of its arguments:

ValidateProc: TYPE = PROCEDURE[tuple: Database.AttributeTuplej
RETURNS[BOOLEAN);

A revalidation procedure could then be handed to the cache manager along with data to be cached
and used to revalidate cache entries in an application specific way. The cache manager need not
understand the semantics of a revalidation procedure aa long as it has a standard way of invoking
the routine and interpreting the return value to decide whether or not to purge the cache entry in
question.

Several problems arise with call-back procedures, however. In heterogeneoua network environ-
ments, the name servers may run different operating systems and programming languages than their
clients, so passing executable procedures from clients to servers may be difficult. Also, the name
servers may not be able to establish the proper execution environment in which to run the procedure
or possess the necessary access rights.

More importantly, placing data validation under the control of a cache manager implies that
verifying the validity of data must be an independent procedure. Often, however, the validation
takes place as part of the client's using the name service data, and the two functions cannot be
feasibly separated due to the semantics of the application. As a real world example, consider the
list of phone numbers that many people keep next to their phones. These lists are essentially caches
of the real information maintained by the phone company. Revalidation of a phone number occurs
when the phone number is dialed and a question of the form, "Is this so-and-so?" is posed; then the
conversation continues. Theoretically, a person (or his intelligent telecommunications equipment)
could periodically revalidate his cache of phone numbers by dialing each one in sequence, asking
the "Does so-and-so still live there?" question, and then hanging up upon receiving the answer. In
practice, this would be socially unacceptable; the commonly accepted protocol for human-to-human
communication would be violated.

Similarly, existing computer communication protocols for invoking services do not generally make
a clean separation of function between end-to-end validation and communication. As an exception,
the Simple Mail Transfer Protocol used for transmitting electronic messages in the OARPA Internet
has a "verify" command to verify the existence of a user name at a patticuiar host [Postel 82bj. New
standard validation procedures should be established for other classes of objects. For instance, am
accented 'Vho are you?" protocol to which all network services respond would allow the availability
of a service at a particular network address to be easily verified.

In conclusion, the use of client-supplied revalidation procedures for managing caches of various
user-defined data types presents several formidable problems in the general case. However, standard
revalidation protocols for common data types, such as mailboxes or servers, coulr! be successfully
utilized.

7.4 Estimates of Cache Accuracy

7.4.1 Piobabilistic algorithms

In general, since a cache manager is unaware of name service updates, measuring the cache
accuracy is impossible. However, given the expected lifetime of a name service attribute tuple.
probabilistic algorithma speculate on the accuracy of the cached data by noting the time since the
data was entered in the name service database.

:ii^<i^>^^^^i^^^iüii^-i--

i^V^l^T^lfV^'rw^T^^VS ^SX^^Vl^ iflP ifll \ "'■ ."Iti^i V- 'rfv^n,^» L^rsm "J* '^^ i-^ iJW &w \.'v v^w'. ^ '■ himuvi 'wi. •S.T"^ * fwi ?w^ •« ^Trunnrwi "*r\ -v vw% -w^-rt-* ww^

97

Figrue 7.3: Distribution function F{t).

The lifetime of an entry in the name service database is defined to be the time between succewve
modifications to that entry, where addition and deletion are considered to be the initial and final
modifications, respectively. If name service data is considered immutable, that is, name service
database entries are never modified, but are simply destroyed and new ones created, then the lifetime
of a data item is truly the time between its birth and death.

For any reasonable lifetime distribution, except memoryless distributions, the probability that a
cache entry is valid decreases with its length of time in the cache (and the time since its creation).
In order for a cache manager to provide the level of accuracy desired by its clients, it must:

1. keep track of the length of time that a piece of data has been in the cache, and

2. estimate the data's accuracy, the probability that the data is still valid.

The first responsibility is simply a matter of storing a cache entry's creation time along with the data.
The ser"-..l function depends on how much knowledge can be obtained about the lifetime distribution
of name service data.

Suppose, for a moment, that the cache manager has perfect knowledge of objects' lifetime dis-
tributions. Let L be a continuous random variable denoting the lifetime of name service database
entries. Let F(t) be the known distribution function cf the random variable L. Then the probability
that L is less than time t is given by

Prob{L < t H 0. if t < 0,
F{t), ift>0.

Thus, if t0 is the time since an entry was created in the name service database, F(t,) is the probability
that the entry is no longer valid. Figure 7.3 depicts a sample distribution function. Observe that F(t)
;,> a nondecrcasing function of t and range» from 0 to 1. F(') can be obtained from /(£). the density

'. f'S..''." .v.r. . t .. 4 .. * ■ 1 . ^^»K ,:%:•. - .^ -■« .■• ,■• lAZflA.
r.f. ,•*.•

£_1,-?~*-A '^ ^--J^* MJ.'AT .a ;JI" ' _»' XM^ASB* 7.

PT-TT-IT^T» \Tr»T"'

98

f(t) «

Figure 7.4; Density function f(t).

Object Lifetime
hosts years
peopie months-years
services days-months
files days
processes minutes I

Table 7.1: Sample object Hfeti Jies.

function of L, by taking the area of the curve of f(t) from 0 to t.aa indicated in Figure 7.4. The graph
of the density of L gives an intuitive feel for what values of L are likely, although, mathematically,
Prob(L = t) = 0 for any value of t since £ is a continuous random variable.

A cache's accuracy level, denoted by A, is the probability that the lifetime of a cache entry exceeds
the time since the entrys creation: Prob(L > t0) > A. Thus, in order to maintain an accuracy level
A, the cache manager might discard cache entries whose time since creation exceeds time t^rtsiioid
such that F{ttiirtihoid) = I - A. The cache manager limits the age of the cache to the threshold
time, and cached information is said to decay over time. The threshold value, tthrtihoid' represents
a simple criterion for deciding how the cache should be aged, that is, when cache entries should be
considered suspicious.

Realistically, one would expect that not all object attributes exhibi; the same lifetime distribu-
tions. In fact a wide range of lifetimes exist. For instance, a host's internet address changes rarely,
if ever, while processes come and go in a matter of minutes. In between these two extremes, lie a
range of objects such as people, files, or services, and a variety of information about those objects.
Table 7.1 presents a rough conjecture of the time various objects remain in a computing environment;
attributes of these objects may vary more rapidly.

To obtain reasonable estimates of the accuracy of differing types of cache entries, the cache
manager should maintain a table of lifetime distributions for various classes of information. Cache
management would then utilize a separate threshold value p?r class. Identifying classes of name
service attribute tuples that have similar lifetime distributions can be difficult One heuristic would
be to distinguish classes of attributes by their type and the type of the object to which they apply.
For instance, the internet addresses of ail hosts in the environment might have similar lifetimes.
On the other hand, the functional lifetimes of files p -obably varies with the specific type of the file

Lii> i ^i^i .A^-'tiO-lNli"; K-uL. i._Jt J_V iJ"«. L* a.L *i ,•.-■-- _ '

IW1trVX5y." V*^*,'■$."'. V *' K W- lVTi»\"^^>'" .TV* UTT v» w it"" »"• * ' ir" '^f' < -w ' -« T, rrcrTi»— jr» t^ v^ v» u-« v~» min- \ -v ■v. -JTVIV ^.-1 in.^ *.-»-'.- v <

[Satyanarayanan 81], so a singl« lifetime distribution for all files would yield poor estimates. In the
worst case, a separate threshold value must be computed for each cache entry.

7.4.2 Estimates from imperfect knowledge

In computing the threshold for suspicious data, the previous section assumed that cache managers
know a priori the lifetime distributions of the data they choose to cache. How do cache managers
obtain this data? It could be obtained by observing actual behavior over a period of time, though
this is not generally feasible due to the long lifetimes of many objects and the difficulty of determining
a function from a limited number of sample nomts. Without some oracle, a cache manage! must rely
on name servers or clients to provide this knowledge. This section presents a series of tec'miques for
selecting cache aging thresholds depending on how much information about an attribute's lifetime
distribution is available. The initial approaches, based on very little feedback from an object's
manager, probably perform unsatisfactorily in most cases.

Left on his own, with no knowledge of an attribute's lifetime, the designer of a cache management
algorithm is forced to use "intuition'1 to pick a value for ithttshnu- For instance, the Xerox Routing
Information Protocol, part of the Xerox Network Systems family of communication protocols, ages
caches of routing information with a seemingly arbitrary threshold time of three minutes [Xerox 31|.
This time is part of the protocol specification and is independent of the network topology or other
properties of the network.

The creator of an object, and the process that most likely registers it with the name service,
presumably has some knowledge about how that object will be used and its expected lifetime. The
object's creator cannot be expected to know the complete distribution function for the lifetime of
the various attributes of the object, but should at least be able to venture a guess of the expected
mean (or median) lifetime, /ctttmit«- This information is registered in the name service database
along with the object's attributes and returned to cache managers as an aid in cache management.
Such data could be used by the cache manager to set a reasonable value for the threshold time, for
instance tthrfhaii — 'edtmad' Of course, this ignores the level of accuracy desired by cache clients,
but is better than picking an arbitrary cache age. Using an estimate of the median object lifetime as
the threshold, the accuracy of the cache would be 50% since Ffmerfian) = 1/2. A 50% level of cache
accuracy would be unsuitable for many applications.

An obvious embellishment to the simple strategy of setting (throhojd to an estimate of the in-
formation's mean or median lifetime would be to let the threshold value vary inversely with the
accuracy, given that F(i((tima((j * 1/2- For example, if an accuracy level of 3/4 is desired, approxi-
mately 50% more accuracy, then txhrtthou could be set to l/2/e,,lrnote. For an arbitrary accuracy <4,
let tthrohoid = 2(1 - -4)'ni(imot«- This straight-forward interpolation of the threshold values, which
takes into account the desired accuracy level A, provides better control over the cache contents with-
out requiring any additional information about object attribute lifetimes. Statistically, it assumes
that the lifetime distribution is a linear function passing through the points (0,0) and (/e»(imat«'0'5)
bounded by 1; depicted in Figure 7.5. In other words, the density of attribute lifetimes is uniform
over the range (0,2/„,lmo;e). Unfortunately, one often observes object lifetimes in practice that have
a smaller variance around the mean than a uniform density.

Simple estimates for the mean object lifetime can be used more intelligently if the cache manager
assumes that object lifetimes match a particular family of distributions; a gamma distribution, F{i) =
T(t;a,X), would likely be a good choice. (The density depicted in Figure 7.4 is roughly a gamma
density with a = 2.) For an assumed family of density functions with a given variance, the estimate of
the mean, le,timatfi cam be used to estimate the actual distribution function, F{t). and subsequently
derive <tfcrejHoJd given the desired accuracy level A.

Considering tlie gamma distribution in a bit more detail, the mean fi is given by ^i = a/A. Thus,
assuming that the lifetimes of name service information are distributed according to the gamma
density for a nartinilar valne of n Fit) ran he approximated bv Fft; a.a//,,(,„.„(,). Note that the

99

.<. * .^MB^^H^n^ ,:^^

■y»gw i-«v-» w»t^fc*li^M»yi!virIT» v*r" W* IT" i."ST"v""r», "■ a^ •-"• ST"> 'J m*mß9MmihNlt.mJß'mJI'm^mJ'mß P^-Vt%* %'' \'',* M M1 ff^Tt1 * '-'"F'V.'-'.'iPTT ''.»-.*-.».■

100

estimate

Figure 7.6: Approximating F(t) by interpolation.

exponential family of densities is a special case of the gamma densities with a = 1. For an exponential
distribution, the rate of decay of the cache is given by A = l//i or A = /i-1 log 2, where > reoresents
the median.

Thus, given an estimate for the lifetime of an object attribute provided by the object's creator or
manager, approximate lifetime distributions can in turn be used to derive thresholds for a given cache
accuracy level. Even fairly imprecise estimates of a cache entry's accuracy permit more inteUigent
cache management than current cache management strategies. However, to achieve leasonably precise
thresholds, and hence better performance, studies of the lifetime distributions of various objects
should be conducted.

7.4.3 Accuracy with revalidation

Ways of estimating the accuracy of a cache entry, given the tin; 'nee it: original creation and
its lifetime distribution, enable caches to be managed intelligently. '• uen an entry is deemed to be
below the desired accuracy level, one option is for the cache ir -mager to actively revalidate the entry.
Upon revalidation, the accuracy of the cache entry should get reset to 100% and start decaying again,
the decay rate should be adjusted to account for the revalidation.

One approach would be to pretend that the object's creation time is the time of the revalidation.
The accuracy then could be computed according to the algorithms presented in the preceding section.
That is, the threshold time value, ttAir»./ioid, would still be set such that f (t(hr,,Äo/d) = I- A, though
the time would be measured from the last validation point instead of the data s creation time.

While this first approach seems simple and intuitively appealing, it has a major flaw in that
»t aääumea that the more act of levcuidaliag a piece of data instaiis new life into it. Actually,
revalidation cannot affect the Lifetime of the data, but merely gives added confidence in the data's

tv»-^»: /^^^^^^^^j^^y^-yy-y^^^yy-^^^-

in v» \r» \ "■'v-w .■» w« \m1 /v^-^' ^ . ■v %, ■. % ^ ■v

conCinued existence. With the exreption of the exponential distribution, 'he accuracy of the data is
dependent on the time of rwalidacion as well as the lifetime distribution and time of creation.

Specifically, with revaiidation, the accuracy of a cache entry is the probability that the data is
still valid t units of time after its birth given that it was valid at the time it was last revalidated; this
is known as a conditional probability. Suppose a particular cache entry's lifetime is represe.ited by a
continuous random variable L, and ths* tuis cache data was last known to be valid at time iVatid after
its creation. In order to maintain a desired accuracy level A, the cache manager should considered this
entry suspect ttkrtiiiotd unita of time after iti creation, where Prob(L < t»hr«jhoid|i > teatftl) Sl-A.
Tnis conditional probability can be determined from the lifetime distribution, F(t), according to
Bayes' Rule,

„ .,, ^ . ir ^ . \ Pro6(L > t„nj,j PI L < tthrfhold)
Frob[L < tthre,hoi<i\L > »„altd) = 5—■, , ^ . ;

rroö(L > tvaiid)

_ fitthrtshold) - F{tvalid)

1 - Fitvaiid)

Notice that for cache entries that have never been rovalidated. where tvaiid — 0, this formula is simply
F(tttiTe$iioid) as expected, and the algorithms presented in the previous section hold.

As discussed earlier, the common techniques for revalidating name service data are baied on
interactions or feedback from an authoritative name server. These assume that the authoritative
name serv ,. for an object have completely accurate information about that object. TJUS, even if a
cache manager makes no eftort to revalidate data stored in its cache, the time of last validation, t„0j„(,
should be initially set to the time that the data was retrieved from the nam? service. Only in cases
where the name servers are not considered completely accurate is the time of last validation identical
to the creation time from the cache manager's point of view. Perhaps, references to cache entries
should update the time of .ast validation, tvatld, under the assumption that the client validates the
data upon use and will complain to the cache manager if the Hata is found invalid.

7.5 Othei asiies in Cache Maintenance

7.5.1 Conflicting Cache Requirements

Thus far, algorithms for maintaiuing a given level of cache accuracy have been discussed assuming
that clients can specify the desired level of accuracy based upon the cost of recovering from inaccurate
data. This section proposes a technique for managing cachi^ that are shared by several clients with
potentially conflicting requirements. For instance, one client may want very accurate data while
another can easily detect and recover from invalid data. Even within the same application, different
accuracies may be needed for different types of data, or for the same data used in different ways.

Suppose clients of the cache call a routine to specify the level of accuracy of the cache they wish
to have maintaiied. Different accuracies for different classes of data can be easily accommodated.
Jowever, if several clients desire different accuracies for the same class of data, th' . dche manager
must have some way of resolving the conflicting demands. For example, with a Periodic-Purge
maintenance policy, choosing the lowest accuracy would be disastrous to those clients that require
'Jghly accurate data. Thus, the cache manager has little hope but to choose the highest accurar/.
Jnfortunately, if the clients' optimal accuracy levels differ substantially, then the client that does not
iced the high accuracy would experience unnecessarily low hit ratios.

To avoid these problems, the cache maintenance algorithm should not try to maintain a particular
accuracy level, but should allow the accuracy to vary dynamically; so dynamically that each client
perceives the cache as being at its desired level of accuracy. Suppose the cache manager never discards
cache entries. (In practice, a Periodic-Purge algorithm can be used to delete cache entries whose
accuracy falla below a minimum accuracy level.) The accuracy of cache entries can be determined by

101

^:^^^^'>:iyy->^^^

• 'IT ir ■!" -

102

the methods described earlier, but no threshold values are computed or used to age the cache. Instead,
clients specify the desired accuracy with each lookup operation. Rather than simply returning the
data if found in the cache, the cache manager first checks if the data meets the accuracy requirements.
If the data falls below the desired accuracy level then the cache manager pretends that the cache
entry does not exist and directs the lookup to an authoritative name server. The new lookup serves
to revalidate the cache entry.

Essentially, cache managers for clients with conflicting cache requirements should use OnDemand-
Re/nth with the accuracy level supplied on ep- .)kup. This approach easily accommodates clients
with different, or even changing, accuracy requ (ents, but may require lots of «torage. For caches
with real size constraints, the techniques in the next section may be used.

7.5.2 Size constraints

The size of a cache is strongly correlated to its accuracy, the access patterns of its clients, and the
cache management algorithm employed, though this correlation is difficult to quantify, just as the
cache hit ratio is difficult to quantify. Assuming client accesses are reasonably regular and a constant
accuracy level is maintained, some steady state cache size exists. To see this, suppose the cache size
at time t is 5f At time t + A, the cache size St~± is 5t minus the number of entries that have
decayed plus the number of new entries added. The number of purged entries per unit time increases
with the size of the cache, while the number of new entries decreases as the cache grows since new
entries are only added when at tual name serv .ce queries are performed, that is, when a cache miss
occurs. Thus, steady state occurs when the rate of decay equals the rate of new cache acquisitions.

If the cache is maintained on plentiful disk storage, then typically the cache growth is solely
dictated by the desired accuracy level. However, occasionally additional size constraints may be
imposeo that force the cache manager to discard data even if it meets the desired accuracy. For
instance, the cache may reside in a very fast, but limited size, memory; or on a personal computer
with severe disk limitations. In these cases, the cache manager must apply some criterion for deciding
what entries to discard.

The many alternatives for managing fixed-size caches include:

• only add new cache entries when room exists in the cache,

• randomly replace existing cache entries with new on^,

• discard the least accurate cache entries,

• use some other measure of caching desirability.

The first alternative manages the cache as usual, but simply ignores any attempts to add data to
a full cache. Thus, the accuracy of the cache remains at the desired level; the specified accuracy
determines the rate of turnover in the cache. Realistically, recently acquired data that is suitable for
caching is more likely to be reaccessed than old cache data, so this first alternative is probably less
beneficial than schemes that choose an existing cache entry to replace.

Random cache replacement is easy to implement, but ignores the cache accuracy level. For a fixed
number of cache entries, higher performance can be achieved by maintaining more accurate data.

Discarding the least accurate cache entries essentially adjusts the accuracy of the cache dynam-
ically until the size constraints are met. However, more computation than usual is required on the
part of the cache manager. The cache manager can no longer simply compute a cache entry's thresh-
old value ttkretkou once, store it along with the entry, and check it periodically; the decision of when
to discard a cache entry is based on the current estimate of its accuracy, which chacges over time
and hence must be periodically recomputed. A simple approximation to this algorithm could discard
the cache entry nearest death, based upon the threshold value computed from the desired level of
accuracy. That is. pick a victim such that the difference between its threshold time and the time it
has already lived is minimized.

• • ■, ^»_- *^' ^*. •v->>:>i"-^>>i"-i-^i>ioi»:v :<'"'>'">_■>:"

.' -'.'<*ij'v*.-TW^:<*r- ■' - -..---

Maximizing the cache accuracy may not yield the optimal performance. With fixed-size caches,
the decision to keep one cache entry often displaces one or more other entries, thus affecting the cache
hit ratio. Neither of the two algorithms outlined above make an effort to improve the hit ratio by
retaining entries most likely to be needed by clients in the near future. Unfortunately, it is diiBcult
for the cache manager to predict future client's accesses to name service data.

Similar problems are faced by fixed-partition memory management algorithms, which must decide
what pages to keep in memory [Belady 66]. Algorithms using LRU replacement policies or clock
algorithms, which have existed for quite some time, attempt to predict future memory referencing
behavior from observing past behavior. None of the cache management algorithms discussed in this
chapter have taken into account the likelihood that the cached data is actually used. Although
the situation with caching is slightly different from memory management because cache entrief axe
neither fixed-size nor completely accurate, lessons can be learned from the older discipline.

For example, a cache manager could use a Periodic-Purge algorithm to guarantee a level of cache
accuracy, and then discard the loast recently used data to meet the size constraints. This would
require the cache manager to note the time of last reference along with each cache entry. A clock-like
algorithm based on "use" bits might also be used effectively. Elaborate decision policies could be
designed that take into account both accuracy levels and past references.

Lastly, a cache manager might use feedback from its clients or name servers to determine the
desirability of caching particular database tuples. One extreme example of this, marking data that
is not suitable for caching, has already been discussed. Others include indications from clients that a
given attribute will be needed in the future, or perhaps is no longer of value2. Also, name servers might
choose to maintain statistics about global referencing patterns and relay these to cache managers.

Each of these options for managing fixed-size caches have certain advantages over the others. For
some the advp^tage is simplicity; others attempt to increase the benefit of the cache m one way
or another. Choosing the best approach requires a quantitative assessment of their effect on '.he
expected name service lookup cost. One can not expect to determine an optimal policy for fixed-siae
caches at least until one for unlimited-size caches can be derived.

7.6 Name Server Support for Caching

7.6.1 Metadata

While the name service may be unaware of the existence of particular caches dispersed throughout
the distributed environment, it contributes to their maintenance by maintaining information about
objects' attribute tuple». In particular, certain .information obtained from authoritative name servers
can aid cache managers in making intelligent decisions about what data should be retained in their
caches. Such information is often referred to as metadata since it is data about the name service data
and not generally of direct interest to clients of the name service.

Metadata that may be maintained by name servers falls into four basic classes:

Event, the time various events occur in the lifetime of a database tuple,

Life'.:me, information about the lifetime distribution of an attribute tuple,

V 'rsion. data that enable? modifications to the name service database to be easily detected,

Advice, knowledge about the desirability of caching particular data.

As evidenced in the caching algorithms presented in this chapter, Event and I»/etime-metadata
enables cache managers to maintain a particular level of cache accuracy. The success of techniques

An analogy to such feedback in the memory management world is the madiue system cail available in Berkeley

MNDC (4.2 DSD), which allows processes to give advice to the kernel about their expected behavior.

103

l^äf^f^^^y
.-^-•k^t-^i

rranf'■fVL"*''j*UVWU^IVHI.-« ■.% WUVL% ""«vTI r^ i'^=5-,^r^r'

104

for estimating the accuracy of a cache entry depends on the amount of information available from
the name service about the data being rnched. Version-metadata is used by cache managers that
wish to actively revalidate cache entries in a cost effective manner, while i4(ftnce-met3data may be
useful for caches with size constraints.

For the accuracy estimation techniques described in Section 7.4, the most important Event-
metadata is the time an object's attribute tuple is added to the name service database; this creation
time allows cache managers to detect suspicious cache entry. If absolute creation times are handed
out by name servers along with the response to a query, then all name servers and cache managers
must have a uniform notion of time. Duo to the impreciseness in the estimated cache accuracy, the
servers' clocks need not be finely synchronized; nevertheless, a reasonably consistent view of time
should be presented by the name service. For example, the name service may choose to present all
times in Universal Coordinated Time (UTC), and name server clocks need only be accurate within
a few minutes of each other.

Alternatively, rather than returning the data's creation time, name servers could return the time
since creation. Cache managers would then compare the accuracy threshold time to the sum of the
time between the data's creation and lookup, as returned by the name service, and the time that the
data has rtsided in the cache. Handing out time differentials allows name serveis and cache managers
to maintain independent notions of time since the absolute time as viewed by the server is never seen
by others.

The DARPA Domain Naming System attempts to aid cache managers by maintaining a
time-to-live field, which indicates how much longer the data should exist before being discarded
[Mockapetris 83b]. Unfortunately, the design does not suggest hew the values of these fields should
be chosen. Moreover, cache maintenance based on time-to-live fields does not provide cache man-
agers any control over the accuracy of the cache. Since such an approach does not even allow a cache
manager to estimate the accuracy of cache entries, it cannot be responsive to a particular client's
needs and recovery costs. Thus, time »inee-birth information, in conjunction with Ii/eh"me-metadata,
is preferable to time-to-live fields.

Other data that fits into the £vent-metadata class includes the time a database entry was last
validated. This information would be usea by cache managers that actively revalidate their cache
entries, name servers that wish to cache data from other servers, and active name servers that play
on active role in maintaining accurate authoritative data.

£t/etime-metadata. needed by cache managers to gauge a cache entry's accuracy, includes infor-
mation about name service database tuples, such as their expected lifetime, their lifetime distribu-
tion function, or a family of approximate lifetime distributions. Whereas £vent-metadata contains
information about actual occurrences in the Life of a particular piece of name service data, Lifetime-
metadata represents statistical information about what is expected of the data's lifetime. As such,
unlike fven^-metadata. which must be maintained for each individual attribute, the lifetime infor-
mation often pertains to a generic class of data, as discussed in Section 7.4.

Thus, assuming the name service provides a way of id mtifying database tuples whose lifetimes are
identically distributed, £i/«£tme-metadata need only be itored once for each group and not for each
database entry. One likely way of grouping database at ribute tuples would be by the type of object
that the data pertains to and the particular attribute type. The attribute type is an explicit part of
the attribute tuple, while the type of the named object is not generally known by the name service.
However, the name service database could be easily augmented with this type information: in fact,
object type information could prov useful at the application level in order to allow type-checked
bindings through the nam« service.

For cache managers that actively revalidate cache entries, name servers may maintain metadata
to facilitate revalidation or the detection of modifications to the name servi atabase. This Version-
metadata need not be understandable by cache managers and could be \ ed on a particular name
server implementation. If the cache manager is unable to interpret the metadata, then revalidation
must be done by presenting the metadata to an authoritative name server. One example of Ver.iinn.

.\\V iKl^iT^z-pX^^fPTyWV*. 'v^^yF^^yjgngW^XUiilkTlil-^gnwtf vw^^ngr^n VUE^*^ « ^W ^T ^ ¥* Mil W M i?g vu v 'g i««i

105

metadsta. tiniestamps, was presented as a convenient way of checking the validity of cached data
without having to compare the actual data values. Maintaining timestamps for database entries is
simply a matter of providirg the storage in the database and updating the timestamp fields whenever
the database tuples are updated.

Finally, Advice-metadata could range from dynamic statistics about client references, used for
predicting future references, to indications of what data should never be cached.

Much of this metadata desired by cache managers is readily available ^o the name servers; the
servers should simply be programmed to retain this metadata along with the data to which it refers.
A name service database entry's creation date is a good example of crucial fvent-metadata that is
easy to acquire. Indications that an entry has been modified are also simply a matter of adding
a timestamp field to the database entry. Other metadata, such as an object's expected lifetime or
lifetime distribution, must be obtained from knowledgeable sources such as the object's creator or
manager.

7.6.2 Modified interfaces

Caching algorithms require feedback from clients and metadata from name servers in order to
fulfill the needs of the cache's clients. Thus, the interfaces presented in Chapter 3 for name servers
and name agents must be expanded for additional information exchange.

First, the Update operation for adding object attributes to the name service database should be
modified to include information about the object that could aid in caching the data,

Metadata: TYPE = STRING;

Update: PROCEDURE(op: UpdateOps, name: Name, attribute:
AttributeType, value: AttributeValue, info: Metadata];

The information desired from name service clients consists primarily of Lifetime and Advt'ce-metadata.
The name agent and name server update operations continue to look identical.

The Lookup operations, on the hand, differ for name agents and name servers when name agents
make use of caches. The name server lookup routine remains basically the same as before, except
that the metadata associated with a database tuple is returned along with its value.

Lookup: PROCEDURE[name: Name, attribute: AttributeType]
RETURNS[AttributeValue, Metadata];

This metadata not only includes the information presented with the attribute when it was registered,
but also might include Lifetime and Version-metadata maintained by the server.

The name agent's interface for accessing the name service might allow clients to specify the desired
accuracy level with every lookup request.

Lookup: PROCEDüRE[name: Name, attribute: AttributeType,
desired: AccuracyLevel] RETURNS[AttributeValue];

Alternatively, the name agent's lookup operation need not change if cli simply specify an overall
desired accuracy level.

Set Accuracy: PROCEDURE[de9iredAccuracy: AccuracyLevel];

^i •> -i ^'■^*\J-\ •.,-. ^«k ^JVJ
,
/_V.V-V.V-V?.OA>-.- v y'r/

v^T"* i"* ^' '."^ v^v^r^^c^^r*"! 'i^Ty.'-V^.''-"'."7»

106

Also, the name agent must provide clients access to the cache's complain routine,

Complain: PROCEDURE[name: Name, attributa: AttributeType,
value: At tribute Value];

The name agent simply passes complaints and requests for desired accuracy levels directly to its local
cache manager. Clients cf the name service need not use the cache interface routines.

7.7 Summary

Caches are unauthoritative repositories of name service data that has been obtained aa the result of
name service queries. They have fast access times, and hence should improve the overall performance
of queries to the name service database assuming that recently requested data is likely to be reused
in the near future. To alleviate the need to maintain perfect cache consistency, cached data must be
treated as hints; clients using caches should be prepared to detect and recover from misinformation.

In order to guaranty performance benefits from using a cache, the cache manager maintains a
minimum level of accuracy of the cache based on clients' recovery costs. The accuracy level of the
cache can be regulated and adjusted dynamically given metadata about the lifetime distribution or
expected lifetime of name service database entries. Cache maintenance algorithms age the cache with
a decay rate that is a function of the data's lifetime distribution and a threshold dependent on the
desired accuracy level. Cache managers may choose to either purge or revalidate cache entries that
fall below the accuracy level. Even caches shared by clients with conflicting or dynamically changing
requirements can be managed so that the clients perceive different accuracy levels.

_ t_ ^* ■ i^-

i F^^l L'»!.'^ L'Nk'li W*K*S*&T*Sm&wmrw*wr*WWa* ^--.T'.l''^'-;'.-. '■•■k-v,^! ^ ^ VJ-. ^-f.,^-.-^^ tt -sn v^«rs:"sn-^r'—i m-umi ^i 'W

107

Chapter 8

Final Remarks

... if you should come upon this spot, please do not hurry on. Wait for a time, exactly
under the star.

— Antoine de Saint Exupery, The Littie Prince.

8.1 Reflections on the Architecture

Distributed name services enable their clients to unambiguously name objects and provide facilities
for accessing information about those objects. This dissertation develops a flexible architecture for
building distributed name services to facilitate sharing of objects in large and diverse computing
environments. The key features of this architecture are:

• Its components are viewed in terms of the object model. The facilities are layered with well
defined interfaces so that changes to the algorithin« «»mployed by one component are isolated
from the other components.

• Existing database management techniques for partitioned and replicated data, recovery, autho-
rization, and query processing can be easily adopted.

• Existing communication protocols, such as remote procedure calls, can also be adopted.

• The role of name servers, which provide the basic service, is distinguished from that of name
agents, which access the service on behalf of clients. Name agents often hide the distributed
nature of the name service from their clients.

• The information maintained by the name service consists of two types: attribute data and
configuration data. In fact, the functions of a name server can be separated into two more
specialized servers, if so desired: a database server that stores attribute data and a name
re»o/utton server that stores configuration data and aäsumes responsibility for resolving names.

• Authorities attributes represent a simple scheme for managing authority information and are
more flexible than authority assignments based on the name structure.

• Context bindings and name clustering are the key to reducing the configuration database.
Names may be clustered either syntactically or algorithmically. Syntactic clustering exploits
the syntactic structure of names and adequately models existing naming conventions. Non-
syntactic clustering, on the other hand, enables the method for resolving names to change
without changing objects' names.

• Different styles of name resolution allow the mechanism to be tailored to the division of com-
putational power between name servers and clients, as well aa to the available communication
paradigms.

108

• Caches of name service data that exist outside the boundaries of the name service can be
effectively managed given feedback from name servers. The information passed by name servers
to cache managers may include Event. Lifetime, Version, and .drfvice-metadata.

Observe that two basic types of bindings are performed by name services:

object name —► authorities —► attributes.

The first binding allows the name service itself to be reconfigured; the authoritative name servers for
an object may change over time. The second allows information about objects to change freely since
the name service permits late binding; information about an object, such as its internet location, is
retrieved as needed rather than being built into client programs.

The mechanisms developed in this dissertation can be used to name a variety of objects in a
general way. However, name management need not be implemented as a single stand-alone network
service. For instance, a -listributed file system may have its own directory system while host names
are managed by a traditional name server. Whether a single network service is 'itilized for all objects
in the distributed computing environment, or separate naming authorities are established for different
object types remains a policy decision.

8.2 Thesis Contributions

Chapter 1 identified five principal problems in providing distributed name services for very large
and diverse computing environments. Solutions to these problems are now presented as contributions
of the dissertation:

• Name resolution: This dissertation dispels the common belief that the structure of names
directly dictates the resolution process. Name structure need not, but can, be exploited to
reduce and distribute the configuration data used to locate an object or its attributes. Names are
resolved by a chain of context bindings determined by applying a series of clustering conditions
to the naaw space.

• Administrative controi: The multiple administrative entities cooperatively participating in the
distributed community retain control over the placement and protection of their objects and
information concerning their objects. Autonomous organizations may supply their own servers
or freely choose other servers to store the attributes for their objects; authorities attributes,
part of the commonly managed configuration database, indicate the authoritative servers for
each object.
The separation of attribute data from configuration data serves as an important contribution
since organizations can enforce required access controls on attribute data maintained on their
servers, while configuration data, which is shared by all and critical to the operation of the
name service, contains only information used to resolve names.

• Overhead costs: Factors that affect the scaling of name services for large numbers of objects
include the amount of storage required in each server and the number of servers involved in
various operations.
First, the number of objects for which an individual name server has authority determines the
amount of storage needed for attribute data. Because of the fine grain assignment of authorities
alloved by the architecture, no lower bound exists for the number of objects managed by a
server. A small amount of configuration data is required in each server to allow them to locate
other servers and remote contexts. Authoritative servers for a context must maintain the
complete context, though, again, general clustering conditions permit fine grain control over
the size of contexts.
Second, the amount of interactions between servers required to perform an operation need not
grow with the number of servers since broadcast and other forms of random inquiry are not

.-. J \e-~-^ rji--a.;^r^,"j."^. vi:^ -J-"^:^i-^?w.-J ■>"-'-r.i.: LV\N\%-.%V>.SV»VN\V\V1S^\5:^\^\1S

■,ir':vT.* 'i.sf ^» r m ~M "ui nm r.p '* » - « =y(" ^—^ '■ ■< oi—* ,^—^ ■ ui .■ orrTi-y ^: J—v—■—■—■ w—i _ m

utilized. The authorities attribute for each object name can be located by a single readily
determined resolution chain. Thus, small workstations with limited resources can serve as
servers, as well as larger machines, without negatively impacting name service operations.

» Adaptation: As the computing environment evolves, structure-free name management allows
the name service to be readily reconfigured without renaming objects. In particular, if a name
server becomes overloaded, part of its responsibilities can be off loaded to a different server.
New name servers can be added to meet expanding demand for services.

Merging independently created name spaces with different naming conventions can be accom-
plished since the name management mechanisms ignore the structure of names. Working out
name conflicts becomes solely an administrative problem (which can be alleviated by having
client software expand partially qualified names into globally unambiguous names).

• Performance: Results obtained from an analytical model for distributed name services show
that the cost of name service operations with a decentralized service need not be appreciably
greater than with a centralized service (though more storage space is required for configuration
data). Substantial cost benefits can be accrued through replication that depend heavily on
the topology of the environment and the delegation of authority over parts of the n;-me space.
Measurements of Xerox's Grapevine registration service indicate properties of clients' reference
patterns that can be exploited to enhance performance, including sizeable localities of interest.

The cost of accessing the name service can be amortized over several object references if clients
maintain local caches of recently acquiied name server data that is likely to be reused in
the future. A new approach to managing caches of hints demonstrates that maintaining a
minimum cache accuracy level, derived from the ratio of lookup costs to the costs of detecting
and recovering from invalid cache entries, guarantees performance improvements. Estimates
of the accuracy of cache entries are computed from various types of metadata, such as the
expected lifetime of an attribute tuple and its time since birth. Even caches shared by clients
with conflicting or dynamically changing requirements can be managed so that the clients
perceive different accuracy levels.

The thesis postulated in Chapter 1 follows from these research results:

PbysicaUy distributed, but logicidly centralized, name services can be provided in a general
and cost effective way, even for very large, geographically dispersed computing communi-
ties.

8.3 Areas for Future Work

Several interesting areas for future work have surfaced in the context of the research discussed
herein.

Experiments on caching should illuminate the applicability of various caching policies. Statistics
on the lifetime distributions of various classes of objects need to be gathered from existing envi-
ronments. Also, more elaborate models of cache behavior nay allow optimal cache management
strategies to be derived or determined experimentally.

Managing large attributes of an object present special problems. Certain classes of attributes,
such as large mail distribution lists, are inherently distributed and should be maintained by the
name service in a distributed fashion. Thus, the notion of authority for such attributes must
be modified.

Name completion mechanisms are needed for converting abbreviations and aliases, which are more
convenient for clients, into fully qualified names, which may be quite long and awkward for large
name spaces. The DARPA Domain Name System, for instance, defines a protocol for requesting
name completion, but does not specify how the completion into a fully qualified name is to be
done. Simple techniques for pxpamling abbreviations, such as adding a default prefix, may be

109

."_ «•_ „Va -ajj .w -'- -f-Vv."..^-'-- "■.■ '■« '-'t."--r.^,'.- •■.• ^-c -J •-- '^

0

110

sufficient in some cases. In other cases, clients may want to obtain the currently registered
name that is most similar to an abbreviation.

Discovering unambiguous names for various objects must take place independent of the name
service. That is, clients of the name service must possess knowledge of the desired object's
name before contacting the name service. In practice, names can be obtained through infor-
mal communication channels, such as human word-of-mouth, electronic messages, or system
documentation. In some cases, the name of an object may be "guessed". Computer systems
for discovering names based on characteristics of the objects, such as keywords or descriptions,
are difficult tc design for distributed environments. How to build such "yellow pages" services
remains an interesting research area.

Attribute-based naming conventions, in which the set of attributes for an object, or some subset
thereof, serve to identify the object, represents an alternative to simple unambiguous character
string names [IFIP 84l. Difficulties in resolving names arise since a given set of attributes may or
may not unambiguously identify a particular object; certainly, the set is not unique. Moreover,
an attribute set that is presently unambiguous may become ambiguous in the future as objects
with similar attributes axe created. Techniques for effectively managing such "names' remain
to be explored.
Resolving attribute-based names likely requires limited searches within a global naming graph.
The name resolution algorithm presented in Chapter 4 is single threaded; aa soon as a clustering
condition is met, the resolution proceeds to a single new context. One could imagine allowing
several attribute clustering conditions to be satisfied and "fork11 concurrent name resolution
chains that attempt to further disambiguate an attribute-based name. This possibility presents
certain problems that were not addressed in this dissertation.

Practical experience obtained from building real systems is needed to check the viability of pro-
posals and new ideas. Systems research entails a combination of design and implementation. This
diasertation describes a new, flexible design for distributed name management. Its utility in practice
remains to be explored. The construction of truly large distributed name services is just over the
horizon.

^^?

AV^vl-klT^.-.

MäJHtW-tirf

Glossary

This dissertation used and introduced a fair amount of terminology, much of which does not have
a universally accepted meaning. For convenient reference, the definitions of these terms aa they relate
to naming and name Services are reproduced below. Be aware that many of these terms have different
meanings in a different context.

abbreviation: a short form for a name that may be used in certain circumstances as a substitute
for the complete name.

active name server: a name server that plays an active role in maintaining accurate authoritative
data.

active revalidation: attempts initiated by a cache manager to check the validity of cached data.

advice-metadata: data maintained about the desirability of caching particular database tuples.

alias: one of several alternative names for an object, sometimes called a nickname.

attribute: a piece of information maintained about a named object by the name service, consisting
of a type and value.

attribute lifetime: the time between successive modifications to an attribute's value.

attribute tuple: the representation of aa attribute stored in the name service database, consisting
of an object's name along with an attrkute type and value.

attribute-based naming convention: a naming convention in which the set of attributes for an
object, or some subset thereof, serve to identify the object.

authoritative name server: a name server that stores information about a particular object and
assumes responsibility for reliably managing that information, also known as a naming authority
for the object.

authorities attribute: an attribute whose value is the list of authoritative name servers for an
object.

cache: an unauthoritative repository of recently acquired name server data, generally maintained
by individual applications or hosts to improve their performance.

cache accuracy level: the percentage of cache entries that are valid at a given point in time; also
the probability that a particular cache entry is valid.

cache accurate-hit ratio: a dynamic measure of the percentage of valid cache entries returned to
a client.

cache aging: the process of discarding cache entries whose time since creation exceeds so: -e thresh-
old.

cache manager: the agent responsible for maintaining the data stored in a cache.

client/server model: a model of distributed computing that classifies active objects into server»,
which offer services, and clients, which make use of those services.

clustering condition: an expression that allows the name space to be conveniently partitioned into
contexts, either syntactically or algorithmically: specifically, a procedure that when applied to
a name yields a true or false value.

Ill

< _ * .. •• :. /_. V.V.V VJ^J-r ■JU'J&MJJL

«jvjmrwrw "wvw rmcm -VK'-JI-n-f ••#>r^ nrrn '«r.nrjwvw% vjnrjrj*-j ^^ «^ «n WWMUV HFI TT^STI^^BW '.'^."tv •.-'■'. ■ii'Mr»»

.112

conflguration data; information stored in context object» about the authoritative name servers for
every named object aa well aa context bindings that guide the name resolution process.

context: logically, a collection of named objects -inJer a common geographical, organizational, or
political affiliation; concretely, a special database object containing configuration data.

context binding: an attribute used for name resolution whose value gives a new name to be resolved
in a new context.

database server: a specialized name server that stores attribute tuples and performs name service
operations, but does not participate in name resolution.

event-metadata: data maintained about the time various events occur in the lifetime of a database
tuple.

explicit context: a component of a name denoting a context in which other parts of the name ?xjst

flat name space: names that are simply character strings exhibiting no structure.

global name; a name that is interpreted in a consistent manner by all clients and services regardless
of their location in the environment or other factors, also called an absolute name.

group name: a name that has a list of names as an attribute, typically used for such things as a
mail distribution list or access control list.

hierarchical name space: names consisting of two or more parts that are strictly nested, forming
levels; also called a tree-structured name space.

hints: information that may not be completely accurate, but may improve the performance of ap-
plications that are able to detect and recover from invalid data; cache data, for instance.

implicit context: a naming context that is not explicitly represented in the structure of th« name.

initial context: the global context that starts the name resolution chain for all objects.

internet address: a handle used by a program for communicating with another program over a
computer network via a communication protocol,

iterative name resolution: a style of name resolution in which the name agent retains control over
the resolution process; a name server does its best to resolve names using only locally available
configuration data and returns tc the calling name agent when it can no longer continue.

lifetime-metadata: data main'lined about the lifetime distribution of an attribute tuple.

locality of reference: the degree to which local name servers are accessed more frequently than
distant servers.

metacontext: a special "context" context containing the authoritative name servers for all other
named contexts.

name: a character string that identifies an object, generally readable by humans and of mnemonic
value.

name agent; an intermediary between name servers and their clients allowing client programs to
be written as if the name service were locally available.

name distribution: the assignment of authority for parts of the name space to various name servers

name registration: the act of registering the existence of an object with the name service and
guaranteeing that the object's name is unambiguous.

name resolution: the process of determining the authoritative name servers for a given object.

name resolution chain: the list of context bindings encountered in cne process of resolving a name,
terminated by an authorities attribute.

name resolution server: an intermediary that accepts responsibility for iteratively resolving names
on behalf of dumb name agents: also name servers containing only configuration data.

name server: an active entity that provides an instance of the name service, generally in cooperation
with other name servers.

-. - > -. -
.vwv.vs. Mv>-v>^'>^-.^v-vi.v. &ji&i%-i^tä^-^

rT»".w_'-".~«r.T?".i

nadle lervice: a network service that enables clients to name resources or objects and share infor-
mation about these objects.

name ■«rvice databaac: the set of attributes, distributed and replicated among the name servers,
for the universe of named objects.

name service metadata: information about an object's attributes that can aid each .^angers in
making intelligent decisions, such as the lifetime distribution of a particular attribute; see
advice-metadata, event-metadata, lifetime-metadata, and version-metadata.

name •ervlce operation: an interface routine provided by the name service, such as Lookup or
Update, that allows clients to access the name service database.

name »pace: the set of names complying with a given naming convention.

naming convention: the set of rules adopted for naming objects, including the syntactic represen-
tation of names as well as the their semantic interpretation.

naming network: a structured name space in which objects are named by paths through a graph;
contexts comprise the nodes of the graph and edges represent named relations between context».

object: anything that deserves a name, such as a computer, file, process, service, distribution list,
computer programmer, etc.

org&niiationally partitioned name space: names structured such that the organizational au-
thority for assigning names is explicitly recognized and decoupled from the authoritative name
servers for those names.

passive revalidation: the invalidation of cached data based on unsolicited feedback, usually from
clients of the cache.

pattern: a template against which a name is compared, ranging from a name that may simply
contain wildcards, which are denoted by "*" and match any sequence of characters, to a regular
expression.

physically partitioned name space: names structured so that an object's name reflects the man-
agement authority for the name, for instance "name.server".

predestinate naming convention: a naming convention, such as a, naming network, in which the
name left to be resolved at any point in the resolution chain is a tail component of the original
name presented for resolution.

probabilistic algorithm: a method for estimating the accuracy of cached data based on the time
since the data was entered in the name service database.

recursive name resolution: a style of name resolution in which name servers recursively call other
servers to continue the resolution of a name that can not be fully resolved locally; the initial
name server that received the operation request returns the appropriate response after the name
has been resolved and the operation performed.

relative name: a name whose interpretation depends on some local state information, such as the
current machine.

requery operation: active refresh based on repeating name server lookups for cached data.

revalidation procedure: a client level routine used to detect invalid cache data in an appLcation
specific way.

structui-e-free name management: a flexible approach to name distribution and resolution,
which breaks the strong ties between the structure of names and their management.

subalias: an abas for a particular component of a name.

suspicious cache data: a cache entry whose probability of being valid, as estimated by the cache
manager, falls below the desired cache accuracy level.

timestamp: a strictly increasing indication of when the last update to a part of a database was
made, sometimes called a version aumber; may be used for revalidating cache entiie«.

113

!•-.*■ '^^-«^ -■■.'. f-V- «■- v. tJM.^-V-■*-V-«'-V- <'■ <'-»'-»'- »'»•-"■ .■,"»'-,"i-<V-f..'v'/P5;y. •

114

tranaitiv« name retolution: a style of name resolution in which the name server currently pro-
cessing an operation simply forwards the operation to a server that can continue its processing;
an authoritative server eventually performs the desired operation and returns the result.

imambiguou« name: a name that refers to at most one object.

unique nun«: a name that is the only name for its referent.

version-metadata: data nuintained about the time of the last update to a database tuple.

A

I

it-'- -'S a.S m * * " . \m~1 ^C^JCA^^ * * •'- t " -'" •'•" • " .** ,**■ ."* «'• »'- '• *» ■*•.''• "• "• '»' '■ . * •• '.^ *!.* ^fc' '.' ' '■" '_' '

f isrvv**"'« ,^"T v7' w^r«y^FT»"

115

I
I

Bibliography

[Abraham and D&lal 80]
S. M. Abraham and Y. K. Dalai.
Techniques for decentralized management of distributed systems.
Proceeding» 20th IEEE Computer Society International Conference (COMPCON), San
Francisco, California, February 1S80, pages 430-436.

[Accetta 83]
M. Accetta.
Resource location protocol.
Carnegie-Mellon University, RFC 887, December 1983.

[Allen et al. 82]
F. W. Allen, M. E. S. Loomis, and M. V. Mannino.
The integrated dictionary/direv-tory system.
Computing Survey» 14(2):245-275+, June 1982.

[Allmcji 83]
E. Allman.
SENDMAIL - An internetwork mail router.
University of California, Berkeley, draft of March 14, 1983.

[Bayer et al. 78]
R. Bayer, R. M. Graham, and G. 'jeegmuller.
Operating System»: An Advanced Course.
Springer-Verlag, 1978.

[Belady 66]
L. A. Belady.
A study of replacement algorithms for virtual storage computers.
IBM Systems .Wnai 5(2):78-101, 1966.

[Birrell 83]
A. D. BirreU.
The grapevine interface.
In Grapevine: Two Paper» and a Report, Xerox Palo Alto Research Center, Technical
Report CSL-83-12, December 1983.

[Birrell and Nelson 84]
A. D. Birrell and B. ,). Nelson.
Implementing remote procedure calls.
ACM Transactions on Computer Systems 2(l):39-59, February 1984.

[Birrell et al. 82]
A. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder.
Grapevine: An exercise in distributed computing.
Communication» of the. /iCAf 25(4):260-274, April 1982.

[Bloch et al. 84]

i.-'V ."- ."• ,""■. > ►"►.
^•^"'.-^-■V-.'j--"iIfi

-.iw-3 wi% ins Tl TH w'-' JW"t-

116

J. J.'Bloch, D. S. Daniela, and A. Z. Spector.
Weighted voting for diiectori^s: A comprehensive study.
Department of Computer Science, Carnegie-Mellon University, Technical Report
CMU-CS-84-114, April 1984.

[Boggs 83j
D. R. Hoggs.
Internet Broadcasting.
Ph.D. thesis, Stanford University.
Available as Xerox Palo Ai.'o Research Center, Technical Report CSL-83-3, October 1983.

[Hoggs et al. 80]
D. R. Hoggs, J. F. Shoch. E. A. Taft, and R. M. Metcalfe.
Pup: An internetwork architecture.
IEEE Tranaaetion» on Communication» COM-28(4):612-624, April 1980.

[Hremer and Drobnik 79{
I. Hremer and 0. Drobnik.
Specification and validation of a protocol for decentralized directory management.
IBM Research Report RC7880, September 1979.

[CarroU 78]
J. M. CarroU.
Names and naming: An interdisciplinary review.
IBM Research Report RC7370, October 1978.

[Cerf 791
V. Cerf.

I internet addressing and naming in a tactical environment.
DARPA/IPTO, EEN 110, August 1979.

[Cerf and Cain 83)
V G. Cerf and E. Cain.
The DoD Internet architecture model.
Computer Network» 7(5):307-318, October 1983.

[Cheng 84]
R. F. Cheng.
Naming and Addressing in Interconnected Computer Network».
Ph.D. thesis. University of Illinoia, Technical Report UIUCDCS-R-84-1158, January 1984.

[Cheng and Liu 82]
R. F. Cheng and J. W. S. Liu.
A coherent scheme to support location-independent references in internetwork environment.
Proceeding» AFIPS Nutional Computer Conference, 1982, pages 775-784.

[Cheriton and Mann 84]
D. R. Cheriton and T. P. Mann.
Uniform access to distributed name interpretation in the V-System,
Proceeding» ith International Conference on Distributed Computing Syttem», San Francisco,
California, May 14-18, 1984.

[Chesley and Rom 83]
H. R. Chesley and R. Rom.
A new approach to network name management.
Proceeding» IEEE INFOCOM 83, San Diego, California, April 1083, pages 31-35 .

[Chou et al. 83]
W. Chou, A. A. Nilason, and S. C. Chang.
Distributed directories in internetworking environment: Strategy and performance.
Proceedings IEEE INFOCOM 83. San Diego, California. April 1983. pages 563-571.

m

' •'. S* "'. *\ -"• '• '''-T ' ' *J * "'-".'•■'*/ '»" *.' '/ '•' "•" V V '♦ "• ■."'-'• -"V

pT»". ■ TTV ■ -^"T"

1.17

[Clark 82]
D. D. Clark.
Name, addresses, ports, and routes.
MIT Lab for Computer Science, RFC 814, July 1982.

[Comer 83]
D. Comer.
The computer science research network CSNET: A history and status report.
Communicationt of the ilCA/26(10):747-753. October 1983.

[Cooper 82]
E. C. Cooper.
A network name space facility.
Computer Science Division, U. C. Berkeley, October 1982.

[Curtis and Wittie 84b]
R. Curtis and L. Wittie.
Global naming in distributed systems.
IEEE Software l(3):76-80, July 1984.

[Dalai J2]
Y. K. Dalai.
Use of multiple networks in Xerox' Network System.
Computer 15(10):82-92, October 1982.

[Dalai and Print« 81]
Y. K. Dalai and R. S. Printis.
48-bit internet and ethemet host numbers.
Proceedings 7th Data Communicationa Sympogium, Mexico City, Mexico, October 1981,
pages 240-245.

[Daniels and Spector 83]
D. Daniels and A. Z. Spector.
An algorithm for replicated directories.
Proceeding» Second ACM Symponium on Principles of Distributed Computing, Montreal,
Canada, August 1983.

[Deutsch 79]
D. P. Deutsch.
A suggested solution to the naming, addressing, and delivery problem for Arpanet message
systems.
Network Information Center, SRI International, RFC 757, September 1979.

[Feinler 77]
E. J. Feinler.
The identification data base in a networking environment.
1977 National Telecommunications Conference Record, 1977, pages 21:3.1-3.5.

[Feinler et al. 82]
E. Feinler, K. Harrenstien, Z. Su, and V. White.
DoD Internet host table speciucatiun.
Network Information Center, SRI International, RFC 810, March 1, 1982.

[Garcia-Luna and Kuo 81]
J. J. Garcia-Luna and F. F. Kuo.
Addressing and directory systems for large computer mail systems.
Proceedings IFIP TC8 International Symposium on Computer Message Systems,
North-Holland, Ottawa. Canada. 1981, pages 297-313.

[Gelernter 84)
D. Gelernter.
Dynamic global namt »paces on network computers.

JC

■v.

.IS

A'
' v

f '

J- .'.■SJ».-J- •-' »^ !> *> V> -^ > -^ VV-> '. ■> ^ - .- ^ > ^ ■ai-t-« -> 1 jj.^.i^"iü^ J' ^ - ,. ^ L * - - ^ '- -'- ^ A ■ -J --*

prywv •". Fl * • -s -«.-•'-•-«;' V "." "IV ■.•» "* T'Trr''7* ITiff.«;»- rv-r^TT; f ^ .-.-^ -y -.»-.»T» V».U» VfÄ^ä*'# n

US

Proc'tedinga 1984 International Conference on Parallel Processing, Columbus, Ohio, August
1964, pages 25-31.

[Gifford 79]
D. K. Gifford.
Weighted voting for replicated data.
Proceedings Seventh Symposium on Operating Systems Principles, December 1979, pages
150-162.

[Gray 78]
J. N. Gray.
Notes on database operating systems.
In Bayer et al. [Bayer et al. 78], pages 393-481.

[Harrenstien 77]
K. Harrenstien.
NAME/FINGER.
Network Information Center, SRI International. RFC 742, December 1977.

[Harrenstien and White 32]
K. Harrenstien and V. White.
NICNAME/WHOIS.
Network Information Center, SRI International, RFC 812, March 1982.

[Harrenstien tt al. 82]
K. Harrenstien, V. White, and E. Feinler.
Hostnames server.
Network Information Center, SRI International, RFC 811, March 1982.

[hinden et al. S3]
R. Hinden, J. Haverty, and A. Sheltzer.
The DARPA Internet: Interconnecting heterogeneous computer networks with gateways.
Computer 16(9):38-48, September 1983.

[Hoffman et al. 83]
M. Hoffman, R. Schantz, R. Thomas, and B. Woznirk.
Cronus, a distributed operating system: Prelimin<ixy system/subs/stem specification.
Bolt Beranek and Newman Inc., draft of June 2, 1983.

[HoUer 81]
E. Holler.
Multiple copy update.
In Lampson et al. [Lampson et al. 81], pages 284-307.

[IFIP 33]
IFIP WG 65.
Naming and directory services for message handling systems.
Working paper, version 4, July J983.

[IFIP 84]
IFIP WG 6.5.
A user-friendly naming convention for use in communication networks.
Working paper, version 3, March 1984.

[ISO 81]
ISO/TC97/SC16.
Data processing-Open systems interconnection-Basic reference model.
Computer iVetworib 5(2):81-118. April 1981.
Approved as ISO International Standard IS 7498.

■Janson et al. 83]
P. A. Janson, W. Bux, and E. Mumprecht.

•V ».^ fc'» *"* ,*" k'^ ."- ,.'• ."■ /• A J»"' .''•

'•r."^'-^.^:'JS S^H 1,^1 S^i IT" k"* i7*ifV-W\MV*liFtLitm WV-iTi OTI in>vr* W^nc^v^mni^*i^«L'HUiUTVBWW-swwiramnr* VIVT!.-!r»nyn r« r»m« tr \

119
3

Addressing and naming in 'ocal-prea inter-networks.
IBM Zurich Research Laboratory. V -
Presented at workshop on Ring Technology Local Ar»*a Networks, Kent, U.K., September JS
1983.

[Kerr 81]
I. H. Kerr.
Interconnection of electronic mail systems - A proposal on naming, addressing and routing. ^
Proceeding» IFIP TC6 International Symporium on Computer Mestage Systems,
North-Holland, Ottawa, Canada, 1981, pages 315-326. V

[Lampson 81J
B. W. Lampson.
Atomic transactions.
In Lampson et al. [Lampson et al. 81], pages 246-265.

[Lampson 83]
B. W. Lampson.
Hints for computer system design.
Proceedings Ninth Symposium on Operating Systems Principles, Bretton Woods, New
Hampshire, October 1983, pages 33-48.

[Lampson et al. 81]
B. W. Lampson, M. Paul, and H. J. Siegert, editors.
Distributed Systems - Architecture and Implementation.
Springer-Verlag, 1981.

[Landweber et al. 83]
L. Landweber, M. Litzkow, D. Neuhengen, and M. Solomon.
Architecture of the CSNET Name Server.
Proceedings ACM SIGCOMM '83 Symposium, Austin, Texas, March 1983, pages 146-153.

[Leach et al. 82] |
P. J. Leach, B. L. Stumpf, J. A. Hamilton, and P. H. Levine.
UIDS As internal names in a distributed file system.
Proceedings ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
Ottawa, Canada, August 1982, pages 34-41.

[Lindsay 80]
B. Lindsay.
Object naming and catalog management for a distributed database manager.
Proceedings Second International Conference on Distributed Computing Systems, Paris,
France, April 1981, pages 31-40.
Also available as IBM Research Report RJ2914, August 1979.

[Lindsay et al. 84]
B. G. Lindsay, L. M. Haas, C. Mohan, P. F. Wilms, and R. A. Yost.
Computation and communication in R*: A distributed database manager.
ACM Transactions on Computer Systems 2(l):24-38, February 1984.

[Lindsay et al. 79]
B. Lindsay et al..
Notes on distributed databases.
IBM Research Report RJ2571, July 1979.

[Livesey 79]
J. Livesey.
Inter-process communication and naming in the Mininet system.
Compcon '79. Spring 1979, pages 222-22C.

[Lyngbaek and McLeod 82)
P. Lyngbaek and D. McLeod.

■ - >^- «V- . ■ . f- i . > . /. f- f* df. -f. i . i". ii . .". ^. t". .. .-^ «•_.- _ Jv >..v>. ^.v^

rf t^^^r^'Tw"r•T,• r* s-» r» n r" ."".^» »r»r" »r,'.\r« it •fr ^jt 'Jk ■> "ji

120

A distributed name server for information objects.
Computer Science Department, University of Southern California, Technical Report
TR-200. December 1982.

[Martella and Schreiber 80]
G. Martella and F. A. Schreiber.
A data dictionary for distributed databases.
Proceeding» International Sympotium on DUtributed Data Bases, Paris, France,
North-Holland, 1980, pages 17-33.

[Mills 81]
D. L. Mills.
Internet nams uomaina.
COMSAT Laboratories, RFC 799, September 1981.

[Mitchell et al. 79]
J. G. Mitchell, W. Maybury, and R. Sweet.
Mesa language manual (version 5.0).
Xerox Palo Alto Research Center, Technical Report CSL-79-3, April 1979.

[Mockapetris 83aj
P. Mockapetris.
Domain names - Concepts and facilities.
USC Information Sciences Institute, RFC 882, November 1983.

[Mockapetris 83b]
P. Mockapetris.
Domain names - Implementation and specification.
USC Information Sciences Institute, RFC 883, November 1983.

[Mogul 84]
J. Mogul.
Representing information about files.
Proceeding» 4th ' .temationai Conference on Distributed Computing System», San Francisco,
California, May 1984, pages 432-439.

[Needham and Herbert 82]
R. M. Needham and A. J. Herbert.
The Cambridge Distributed Computing Sy»tem.
Addison-Wesley, 1982.

[Needham and Schroeder 78]
R. M. Needham and M. D. Schroeder.
Using encryption for authentication in large networks of computers.
Communication» of the ACAf 21(12): 993-999, December 1978.

[Nowitz 78]
D. A. Nowitz.
Uucp implementation description.
UNIX Programmer'» Manual, seventh edition, volume 2, Bell Laboratories, October 1978

[Oppen and Dalai 83]
D. C. Oppen and Y. K. Dalai.
The Clearinghouse: A decentralized agent for locating named objects in a distributed
environment.
ACM Tran»action» on Office Information System» l(3):230-253. July 1983.
An expanded version of this paper is available as Xerox Report OPD-T8103, October 1981.

[Pickens et al. 79b]
J. R. Pickens, E. J. Feinler. and J. E. Mathis.
The NIC name server-A datagram based information utility.
Proceedings 4th Berkeley Workshop on Distributed Data Management and Computer
Networks, August 1979. -es 275-283.

£^V^ J>iv.-V A'l-lv^\VN'VO^A^

B'Til-niii--»-v»,-!-j's»,^iiir1»<i'Tv,,'^ir,'ir"i-'v^,»'' CVT" % •m.y&'r,* ffymfJ'Jt'y.l.nv^ vr* v» ,.T^.•^'1.'v■,vw.," "rnr^^uTt-^"«.' v>n»" "f^'^i." "'s T* IB^M^«»

121 §
'■

^

[Popek et al. 81]
G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rud.isin, and G. Thiel.
LOCUS: A network transparent, high reliability distributed system.
Proeeedingt Eighth Sympotinm on Operating Systems Principles, Pacific Grove, California, jj
December 1981, pages 169-177.

[Postel 79]
J. Postel. H
Internet name server.
Information Sciences Institute, University of Southern California, IEN 116, August 1979. T|

[Postel 82bl
j. Fostei.
Simple mail transfer protocol.
USC Infonnatioo Sciences Institute, RFC 821. August 1982.

[Postel 84]
J. Postel.
Domain Name System implementation schedule - revised.
USC Information Sciences Institute, RFC 921, October 1984.
Previous schedules were released as RFC 881, November 1983, and RFC 897, February 1984.

[Postel et al. 81]
J. B. Postel, C. A. Sunshine, and D. Cohen.
The ARPA Internet Protocol.
Computer Networks 5(4):261-271, July 1981.

[Roberts and Wessler 70]
L. G. Roberts and B. D.Wessler.
Computer network development to achieve reaource sharing.
Proceedings AFIPS Spring Joint Computer Conference, 1970, pages 543-549.

[Rosen 81]
E. C. Rosen.
Logical addressing.
Bolt Beranek and Newman Inc., IEN 183, May 1981.

[Saltner 78]
J. H. Saltzer.
Naming and binding of objects.
In Bayer et al. [Bayer et al. 78], pages 99-208.

[Saltier 82]
J. H. Saltzer.
On the naming and binding of network destinations.
Proceedings IFIP/TC6 International Symposium on Local Computer Networks, Florence,
Italy, April 19-21, 1982, pages 311-317.

[Satyanarayanan 81]
M. Satyanarayanan.
A study of file sites and functional lifetimes.
Proceedings Eighth Symposium on Operating Systems Principles, Pacific Grove, California,
December 1981. pages 96-108.

[Schicker 82]
P. Schicker.
Naming and addressing in a computer-based mail environment.
IEEE Transactions on Communications COM-30(l):46-52. January 1982.

[Schroeder et al. 84]
M. D. Schroeder, A. D. Birrell, and R. M. Needham.
Experience with (Jrapevine: The growth of a distributed system.
ACM Transactions on Computer Systems 2(l):3-23. February 1984.

.^iaA:^v-v->:>>:.>v-:,y^>>^^^

s I
I 122

[Shoch78] *
J. F. Shoch.
Internetwork naming, addressing, and routing.
Proeetdingi 17th IEEE Computer Society International Conference (COMPCON),
September 1978, pages 72-79.

[Sirbu and Sutherland 84j
M. A. Sirbu, Jr. and J. B. Sutherland.
Naming and directory issues in message transfer systems.
Proceeding» IFIP WG-6.5 International Working Conference on Computer Metsage
Service», Nottingham, England, May 1984.

[Smith 82]
A. J. Smith.
Cache memories.
Computing Survey» 14(3):473-530, September 1982.

[Solomon tt al. 82]
M. Solomon, L. H. Landweber, and D. Neuhengen.
The CSNET Name Server.
Computer Network» 6(3):16l-172, July 1982.

[Su 82]
Z. Su.
A distributed system for internet name service.
Network Information Center, SRI International, RFC 830, October 1982.

[Su and Postel 82]
Z. Su and J. Postel.
The domain naming conw»nticn for internet uäer applications.
Network Information Center, SRI International. RFC 819, August 1982.

[Sunshine 82]
C. A. Sunshine.
Addressing problems in multi-network systems.
Proceeding» INFOCOM 82, Las Vegis, Nevada, March 1982, pages 12-18.

[Sunshine and Postel 80]
C. Sunshine and J. Postel.
Addressing mobile hosts in the ARPA internet environment.
USC Information Sciences Institute, ESN 135, March 1980.

[Terry 82]
D. Terry.
The COSE Name Server.
IBM San Jose Research Lab, Internal Memo , June 1982.
Available as IBM Research Report RJ4161, January 1984.

[Terry 84]
D. B. Terry.
An analysis of naming conventions for distributed computer systems.
Proceeding» ACM SIGCOMM '81 Montreal. Quebec, June 1984, pages 218-224.

[Terry et al. 84]
D. B. Terry, M. Painter, D. Higgle, and S. Zhou.
The Berkeley Internet Name Domain Server.
Proceeding» USENIX Summer Conference, Salt Lake City. Utah, June 1984. pages 23-31.
Also available as Computer Science Division. U. C. Berkeley. Report No. UCB/CSD
84/182. May 19C4.

[Thiel 83]
G. I. Thiel.

V \^> %-%-- V V V ^A •>?-* 'v <« *.«>.- ■_-» "J>VJi -^ -.- "^ ^ '^ *.. -^ '± *i -it A CM r. * ft , ?A\i ^ rl - k^sä* r.W^

Umrmn^^^g^jmr^^w^mimnPdwmi^s^^&evwTwwwv wv ^-J r-# *■* r, »-vjry »-k wv ^ »Of KS RÜ W i -WM - «_- ?t, ^ Ä,' '^-LÄFT.-sr. a« LJWUW U-» W» If t« ^ i, ■

123

Partitioned Operation and DUtributed Data Bait Management Syttem» Catalog».
Ph.D. thesis, University of California, Los Angeles, UCLA Report No. CSD-83096, August
1983.

[Thomas 73]
R. H. Thomas.
A resource sharing executive for the ARPANET.
Proceeding» AFIPS National Computer Conference, 1973, pages 155-163.

[Walker et al. 83]
B. Walker, G. Popek, R. EngUsh, C. Kline, and G. Thiel.
The LOCUS distributed operating system.
Proceeding» Ninth Sympo»ium on Operating Syetem» Principle», Bretton Woods, New
Hampshire, October 1983, pages 49-70.

[Watson 81]
R. W. Watson.
Identifiers (naming) in distributed systems.
In Lampson et al. [Lampson et al. 81], pages 191-210.

[Wu 83]
Y. Wu.
Performance of file directory systems on a network with redundant data baaes.
Proceeding» IEEE INFOCOM 83, San Diego, California, April 1983, pages 572-580.

[Xerox 81]
Xerox Corporation. Internet transport protocols.
Xerox System Integration Standard 028112, December 1981.

■J ". ^-»'?-fc"-i-»'''-j '■•''-g"'''-h'": J-'* <*'.»"- J.''-»'ü ■>'■: yh-■ j-"* \-r_»**L f J**Mfj '-?j'_^^!jt^_j

